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adjMatrix Adjacency matrix of a graph

Description

Transforms the “edge matrix” of a graph into the adjacency matrix.

Usage

adjMatrix(A)

Arguments

A a square matrix representing the edge matrix of a graph.

Details

Given the edge matrix A of a graph, this can be transformed into an adjacency matrix E with the
formula E = (A− I)T .
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Value

E the adjacency matrix of the graph.

Author(s)

Giovanni M. Marchetti

See Also

edgematrix

Examples

amat <- DAG(y ~ x+z, z~u+v)
E <- edgematrix(amat)
adjMatrix(E)

AG Ancestral graph

Description

AG generates and plots ancestral graphs after marginalization and conditioning.

Usage

AG(amat,M=c(),C=c(),showmat=TRUE,plot=FALSE, plotfun = plotGraph, ...)

Arguments

amat An adjacency matrix, or a graph that can be of class graphNEL-class or an
igraph object, or a vector of length 3e, where e is the number of edges of the
graph, that is a sequence of triples (type, node1label, node2label). The type of
edge can be "a" (arrows from node1 to node2), "b" (arcs), and "l" (lines).

M A subset of the node set of a that is going to be marginalized over

C Another disjoint subset of the node set of a that is going to be conditioned on.

showmat A logical value. TRUE (by default) to print the generated matrix.

plot A logical value, FALSE (by default). TRUE to plot the generated graph.

plotfun Function to plot the graph when plot == TRUE. Can be plotGraph (the default)
or drawGraph.

... Further arguments passed to plotfun.
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Value

A matrix that is the adjacency matrix of the generated graph. It consists of 4 different integers as
an ij-element: 0 for a missing edge between i and j, 1 for an arrow from i to j, 10 for a full line
between i and j, and 100 for a bi-directed arrow between i and j. These numbers are added to
be associated with multiple edges of different types. The matrix is symmetric w.r.t full lines and
bi-directed arrows.

Author(s)

Kayvan Sadeghi

References

Richardson, T.S. and Spirtes, P. (2002). Ancestral graph Markov models. Annals of Statistics, 30(4),
962-1030.

Sadeghi, K. (2013). Stable mixed graphs. Bernoulli 19(5B), 2330–2358.

See Also

MAG, RG, SG

Examples

##The adjacency matrix of a DAG
ex<-matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0),16,16,byrow=TRUE)

M <- c(3,5,6,15,16)
C <- c(4,7)
AG(ex, M, C, plot = TRUE)
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allEdges All edges of a graph

Description

Finds the set of edges of a graph. That is the set of undirected edges if the graph is undirected and
the set of arrows if the graph is directed.

Usage

allEdges(amat)

Arguments

amat a square Boolean matrix, with dimnames, the adjacency matrix of a graph.

Value

a matrix with two columns. Each row of the matrix is a pair of indices indicating an edge of the
graph. If the graph is undirected, then only one of the pairs (i, j), (j, i) is reported.

Author(s)

Giovanni M. Marchetti

See Also

cycleMatrix

Examples

## A UG graph
allEdges(UG(~ y*v*k +v*k*d+y*d))

## A DAG
allEdges(DAG(u~h+o+p, h~o, o~p))
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anger Anger data

Description

Anger data

Usage

data(anger)

Format

A covariance matrix for 4 variables measured on 684 female students.

X anxiety state

Y anger state

Z anxiety trait

U anger trait

Details

Trait variables are viewed as stable personality characteristics, and state variables denote behaviour
in specific situations. See Cox and Wermuth (1996).

References

Cox, D. R. and Wermuth, N. (1996). Multivariate dependencies. London: Chapman and Hall.

Cox, D.R. and Wermuth, N. (1990). An approximation to maximum likelihood estimates in reduced
models. 77(4), 747-761.

Examples

# Fit a chordless 4-cycle model
data(anger)
G = UG(~ Y*X + X*Z + Z*U + U*Y)
fitConGraph(G,anger, 684)
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basiSet Basis set of a DAG

Description

Finds a basis set for the conditional independencies implied by a directed acyclic graph, that is a
minimal set of independencies that imply all the other ones.

Usage

basiSet(amat)

Arguments

amat a square matrix with dimnames representing the adjacency matrix of a DAG.

Details

Given a DAG and a pair of non adjacent nodes (i, j) such that j has higher causal order than i, the
set of independency statements i independent of j given the union of the parents of both i and j is
a basis set (see Shipley, 2000). This basis set has the property to lead to independent test statistics.

Value

a list of vectors representing several conditional independence statements. Each vector contains the
names of two non adjacent nodes followed by the names of nodes in the conditioning set (which
may be empty).

Author(s)

Giovanni M. Marchetti

References

Shipley, B. (2000). A new inferential test for path models based on directed acyclic graphs. Struc-
tural Equation Modeling, 7(2), 206–218.

See Also

shipley.test, dSep, DAG

Examples

## See Shipley (2000), Figure 2, p. 213
A <- DAG(x5~ x3+x4, x3~ x2, x4~x2, x2~ x1)
basiSet(A)
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bfsearch Breadth first search

Description

Breadth-first search of a connected undirected graph.

Usage

bfsearch(amat, v = 1)

Arguments

amat a symmetric matrix with dimnames specifying the adjacency matrix of the undi-
rected graph

v an integer, indicating the starting node of the search. Defaults to the first node.

Details

Breadth-first search is a systematic method for exploring a graph. The algorithm is taken from Aho,
Hopcroft & Ullman (1983).

Value

tree the edge matrix of the resulting spanning tree

branches a matrix with two columns, giving the indices of the branches of the spanning
tree

chords a matrix with two columns, giving the indices of the chords of the spanning tree

Author(s)

Giovanni M. Marchetti

References

Aho, A.V., Hopcrtoft, J.E. & Ullman, J.D. (1983). Data structures and algorithms. Reading:
Addison-Wesley.

Thulasiraman, K. & Swamy, M.N.S. (1992). Graphs: theory and algorithms. New York: Wiley.

See Also

UG, findPath, cycleMatrix
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Examples

## Finding a spanning tree of the butterfly graph
bfsearch(UG(~ a*b*o + o*u*j))
## Starting from another node
bfsearch(UG(~ a*b*o + o*u*j), v=3)

binve Inverts a marginal log-linear parametrization

Description

Inverts a marginal log-linear parametrization.

Usage

binve(eta, C, M, G, maxit = 500, print = FALSE, tol = 1e-10)

Arguments

eta a vector of dimension t-1 where t is the number of cells of a contingency table.

C A contrast matrix.

M A marginalization matrix.

G G is the model matrix of the loglinear parameterization with no constant term.

maxit an integer, specifying the maximum number of iterations. Default 500.

print a logical value: if TRUE, prints the criterion after each cycle.

tol A small value specifying the tolerance for the convergence criterion. Default:
1e-10.

Details

A marginal log-linear link is defined by η = C(M log p). See Bartolucci et al. (2007).

Value

A vector of probabilities p.

Note

From a Matlab function by A. Forcina, University of Perugia, Italy.

Author(s)

Antonio Forcina, Giovanni M. Marchetti
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References

Bartolucci, F., Colombi, R. and Forcina, A. (2007). An extended class of marginal link functions
for modelling contingency tables by equality and inequality constraints. Statist. Sinica 17, 691-711.

See Also

mat.mlogit

blkdiag Block diagonal matrix

Description

Block diagonal concatenation of input arguments.

Usage

blkdiag(...)

Arguments

... Variable number of matrices M1, M2, ....

Value

A block diagonal matrix diag(M1, M2, ...).

Author(s)

Giovanni M. Marchetti

See Also

diag

Examples

X <- c(1,1,2,2); Z <- c(10, 20, 30, 40); A <- factor(c(1,2,2,2))
blkdiag(model.matrix(~X+Z), model.matrix(~A))
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blodiag Block diagonal matrix

Description

Split a vector x into a block diagonal matrix.

Usage

blodiag(x, blo)

Arguments

x A vector of length n.

blo A vector of positive integers such that sum(blo) == n.

Value

A block-diagonal matrix with as many row as elements of blo and n columns. The vector x is split
into length(blo) sub-vectors and these are the blocks of the resulting matrix.

Author(s)

Giovanni M. Marchetti

See Also

blkdiag, diag

Examples

blodiag(1:10, blo = c(2, 3, 5))
blodiag(1:10, blo = c(3,4,0,1))

checkIdent Identifiability of a model with one latent variable

Description

Checks four sufficient conditions for identifiability of a Gaussian DAG model with one latent vari-
able.

Usage

checkIdent(amat, latent)
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Arguments

amat a square matrix with dimnames, representing the adjacency matrix of a DAG.

latent an integer representing the latent variables among the nodes, or the name of the
node.

Details

Stanghellini and Wermuth (2005) give some sufficient conditions for checking if a Gaussian model
that factorizes according to a DAG is identified when there is one hidden node over which we
marginalize. Specifically, the function checks the conditions of Theorem 1, (i) and (ii) and of
Theorem 2 (i) and (ii).

Value

a vector of length four, indicating if the model is identified according to the conditions of theorems
1 and 2 in Stanghellini & Wermuth (2005). The answer is TRUE if the condition holds and thus the
model is globally identified or FALSE if the condition fails, and thus we do not know if the model is
identifiable.

Author(s)

Giovanni M. Marchetti

References

Stanghellini, E. & Wermuth, N. (2005). On the identification of path-analysis models with one
hidden variable. Biometrika, 92(2), 337-350.

See Also

isGident, InducedGraphs

Examples

## See DAG in Figure 4 (a) in Stanghellini & Wermuth (2005)
d <- DAG(y1 ~ y3, y2 ~ y3 + y5, y3 ~ y4 + y5, y4 ~ y6)
checkIdent(d, "y3") # Identifiable
checkIdent(d, "y4") # Not identifiable?

## See DAG in Figure 5 (a) in Stanghellini & Wermuth (2005)
d <- DAG(y1 ~ y5+y4, y2 ~ y5+y4, y3 ~ y5+y4)
checkIdent(d, "y4") # Identifiable
checkIdent(d, "y5") # Identifiable

## A simple function to check identifiability for each node

is.ident <- function(amat){
### Check suff. conditions on each node of a DAG.

p <- nrow(amat)
## Degrees of freedom
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df <- p*(p+1)/2 - p - sum(amat==1) - p + 1
if(df <= 0)

warning(paste("The degrees of freedom are ", df))
a <- rownames(amat)
for(i in a) {

b <- checkIdent(amat, latent=i)
if(TRUE %in% b)

cat("Node", i, names(b)[!is.na(b)], "\n")
else

cat("Unknown.\n")
}

}

cmpGraph The complementary graph

Description

Finds the complementary graph of an undirected graph.

Usage

cmpGraph(amat)

Arguments

amat the adjacency matrix of an undirected graph

Details

The complementary graph of an UG is the graph that has the same set of nodes and an undirected
edge connecting i and j whenever there is not an (i, j) edge in the original UG.

Value

the edge matrix of the complementary graph.

Author(s)

Giovanni M. Marchetti

References

Lauritzen, S. (1996). Graphical models. Oxford: Clarendon Press.

See Also

UG, DAG
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Examples

## A chordless four-cycle
four <- UG(~ a*b + b*d + d*e + e*a)
four
cmpGraph(four)

conComp Connectivity components

Description

Finds the connectivity components of a graph.

Usage

conComp(amat, method)

Arguments

amat a square matrix with dimnames, the adjacency matrix of an UG.

method an integer 1 or 2 to choose the method used to find the components. Method 2
is more efficient for large graphs.

Value

an integer vector representing a partition of the set of nodes.

Author(s)

Giovanni M. Marchetti

References

Lauritzen, S. (1996). Graphical models. Oxford: Clarendon Press.

See Also

UG

Examples

## three connected components
conComp(UG(~a*c+c*d+e+g*o*u))
## a connected graph
conComp(UG(~ a*b+b*c+c*d+d*a))
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correlations Marginal and partial correlations

Description

Computes a correlation matrix with ones along the diagonal, marginal correlations in the lower
triangle and partial correlations given all remaining variables in the upper triangle.

Usage

correlations(x)

Arguments

x a square symmetric matrix, a covariance matrix, or a data.frame for n observa-
tions and p variables.

Value

a square correlation matrix with marginal correlations (lower triangle) and partial correlations (up-
per triangle).

Author(s)

Giovanni M. Marchetti

References

Cox, D. R. & Wermuth, N. (1996). Multivariate dependencies. London: Chapman & Hall.

See Also

parcor, cor

Examples

## See Table 6.1 in Cox & Wermuth (1996)
data(glucose)
correlations(glucose)
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cycleMatrix Fundamental cycles

Description

Finds the matrix of fundamental cycles of a connected undirected graph.

Usage

cycleMatrix(amat)

Arguments

amat a symmetric matrix with dimnames denoting the adjacency matrix of the undi-
rected graph. The graph must be connected, otherwise the function returns an
error message.

Details

All the cycles in an UG can be obtained from combination (ring sum) of the set of fundamental
cycles. The matrix of fundamental cycles is a Boolean matrix having as rows the fundamental
cycles and as columns the edges of the graph. If an entry is one then the edge associated to that
column belongs to the cycle associated to the row.

Value

a Boolean matrix of the fundamental cycles of the undirected graph. If there is no cycle the function
returns NULL.

Note

This function is used by isGident. The row sum of the matrix gives the length of the cycles.

Author(s)

Giovanni M. Marchetti

References

Thulasiraman, K. & Swamy, M.N.S. (1992). Graphs: theory and algorithms. New York: Wiley.

See Also

UG, findPath, fundCycles, isGident, bfsearch



18 DAG

Examples

## Three cycles
cycleMatrix(UG(~a*b*d+d*e+e*a*f))
## No cycle
cycleMatrix(UG(~a*b))

## two cycles: the first is even and the second is odd
cm <- cycleMatrix(UG(~a*b+b*c+c*d+d*a+a*u*v))
apply(cm, 1, sum)

DAG Directed acyclic graphs (DAGs)

Description

A simple way to define a DAG by means of regression model formulae.

Usage

DAG(..., order = FALSE)

Arguments

... a sequence of model formulae

order logical, defaulting to FALSE. If TRUE the nodes of the DAG are permuted accord-
ing to the topological order. If FALSE the nodes are in the order they first appear
in the model formulae (from left to right).

Details

The DAG is defined by a sequence of recursive regression models. Each regression is defined by
a model formula. For each formula the response defines a node of the graph and the explanatory
variables the parents of that node. If the regressions are not recursive the function returns an error
message.

Some authors prefer the terminology acyclic directed graphs (ADG).

Value

the adjacency matrix of the DAG, i.e. a square Boolean matrix of order equal to the number of
nodes of the graph and a one in position (i, j) if there is an arrow from i to j and zero otherwise.
The rownames of the adjacency matrix are the nodes of the DAG.

If order = TRUE the adjacency matrix is permuted to have parents before children. This can always
be done (in more than one way) for DAGs. The resulting adjacency matrix is upper triangular.

Note

The model formulae may contain interactions, but they are ignored in the graph.
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Author(s)

G. M. Marchetti

References

Lauritzen, S. (1996). Graphical models. Oxford: Clarendon Press.

See Also

UG, topSort, edgematrix, fitDag

Examples

## A Markov chain
DAG(y ~ x, x ~ z, z ~ u)

## Another DAG
DAG(y ~ x + z + u, x ~ u, z ~ u)

## A DAG with an isolated node
DAG(v ~ v, y ~ x + z, z ~ w + u)

## There can be repetitions
DAG(y ~ x + u + v, y ~ z, u ~ v + z)

## Interactions are ignored
DAG(y ~ x*z + z*v, x ~ z)

## A cyclic graph returns an error!
## Not run: DAG(y ~ x, x ~ z, z ~ y)

## The order can be changed
DAG(y ~ z, y ~ x + u + v, u ~ v + z)

## If you want to order the nodes (topological sort of the DAG)
DAG(y ~ z, y ~ x + u + v, u ~ v + z, order=TRUE)

derived Data on blood pressure body mass and age

Description

Raw data on blood pressure, body mass and age on 44 female patients, and covariance matrix for
derived variables.

Usage

data(derived)
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Format

A list containing a dataframe raw with 44 lines and 5 columns and a symmetric 4x4 covariance
matrix S.

The following is the description of the variables in the dataframe raw

Sys Systolic blood pressure, in mm Hg

Dia Diastolic blood pressure, in mm Hg

Age Age of the patient, in years

Hei Height, in cm

Wei Weight, in kg

The following is the description of the variables for the covariance matrix S.

Y Derived variable Y=log(Sys/Dia)

X Derived variables X=log(Dia)

Z Body mass index Z=Wei/(Hei/100)^2

W Age

References

Wermuth N. and Cox D.R. (1995). Derived variables calculated from similar joint responses: some
characteristics and examples. Computational Statistics and Data Analysis, 19, 223-234.

Examples

# A DAG model with a latent variable U
G = DAG(Y ~ Z + U, X ~ U + W, Z ~ W)

data(derived)

# The model fitted using the derived variables
out = fitDagLatent(G, derived$S, n = 44, latent = "U")

# An ancestral graph model marginalizing over U
H = AG(G, M = "U")

# The ancestral graph model fitted obtaining the
# same result
out2 = fitAncestralGraph(H, derived$S, n = 44)
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DG Directed graphs

Description

Defines the adjacency of a directed graph.

Usage

DG(...)

Arguments

... a sequence of model formulae

Details

The directed graph is defined by a sequence of models formulae. For each formula the response
defines a node of the graph and its parents. The graph contains no loops.

Value

the adjacency matrix of the directed graph, i.e., a square Boolean matrix of order equal to the
number of nodes of the graph and a one in position (i, j) if there is an arrow from i to j and zero
otherwise. The dimnames of the adjacency matrix are the labels for the nodes of the graph.

Author(s)

G. M. Marchetti

References

Lauritzen, S. (1996). Graphical models. Oxford: Clarendon Press.

See Also

DAG, UG

Examples

## A DAG
DG(y ~ x, x ~ z, z ~ u)

## A cyclic directed graph
DG(y ~ x, x ~ z, z ~ y)

## A graph with two arrows between two nodes
DG(y ~ x, x ~ y)
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## There can be isolated nodes
DG(y ~ x, x ~ x)

diagv Matrix product with a diagonal matrix

Description

Computes faster the product of a diagonal matrix times a full matrix.

Usage

diagv(v, M)

Arguments

v A numeric vector specifying the elements on the diagonal of a matrix.

M A numeric matrix compatible with the product DvM .

Details

Computes N = DvM where Dv is diagonal avoiding the diag operator.

Value

A matrix N.

See Also

diag

Examples

v <- 1:1000
M <- matrix(runif(3000), 1000, 3)
dim(diagv(v, M))
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drawGraph Drawing a graph with a simple point and click interface.

Description

Draw a graph from its adjacency matrix representation.

Usage

drawGraph(amat, coor = NULL, adjust = FALSE, alpha = 1.5,
beta = 3, lwd = 1, ecol = "blue", bda = 0.1, layout = layout.auto)

Arguments

amat the adjacency matrix representation of the graph. This can be an undirected
graph, a directed acyclic graph or a mixed graph with at most a summary graph
structure. See also plotGraph

.

coor an optional matrix of dimensions p x 2 where p is the number of vertices of the
graph. If coor=NULL then the function chooses a default position for the nodes.

adjust a logical value, defaults to FALSE. If TRUE the graph is plotted and the system
waits until the mouse button is pressed (same behaviour of locator function.

alpha a positive value between controlling the distance from the end of the edges to
the nodes of the graph.

beta a positive value controlling the distance of the labels of the variables from the
nodes.

lwd line width of the edges (default: 1).

ecol color of the edges (default: "blue").

bda bidirected edge arrow length (default: 0.1).

layout The name of a function used to compute the (initial) layout of the graph. The
default is layout.auto. This can be further adjusted if adjust is TRUE.

Details

The function is a very simple tool useful for displaying small graphs, with a rudimentary interface
for moving nodes and edges of a given graph and adjusting the final plot. For better displays use
dynamicGraph or Rgraphviz package in Bioconductor project.

Value

The function plots the graph with a initial positioning of the nodes, as specified by coor and remains
in a waiting state. The position of each node can be shifted by pointing and clicking (with the first
mouse button) close to the node. When the mouse button is pressed the node which is closer to the
selected point is moved to that position. Thus, one must be careful to click closer to the selected
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node than to any other node. The nodes can be moved to any position by repeating the previous
operation. The adjustment process is terminated by pressing any mouse button other than the first.

At the end of the process, the function returns invisibly the coordinates of the nodes. The coordi-
nates may be used later to redisplay the graph.

Author(s)

Giovanni M. Marchetti

References

dynamicGraph, Rgraphwiz, https://www.bioconductor.org.

GraphViz, Graph Visualization Project. AT&T Research. https://www.graphviz.org.

See Also

UG, DAG, makeMG, plotGraph

Examples

## A directed acyclic graph
d <- DAG(y1 ~ y2+y6, y2 ~ y3, y3 ~ y5+y6, y4 ~ y5+y6)
## Not run: drawGraph(d)

## An undirected graph
g <- UG(~giova*anto*armo + anto*arj*sara)
## Not run: drawGraph(d)

## An ancestral graph
ag <- makeMG(ug=UG(~y0*y1), dg=DAG(y4~y2, y2~y1), bg=UG(~y2*y3+y3*y4))
drawGraph(ag, adjust = FALSE)
drawGraph(ag, adjust = FALSE)

## A more complex example with coordinates: the UNIX evolution
xy <-
structure(c(5, 15, 23, 25, 26, 17, 8, 6, 6, 7, 39, 33, 23, 49,
19, 34, 13, 29, 50, 68, 70, 86, 89, 64, 81, 45, 64, 49, 64, 87,
65, 65, 44, 37, 64, 68, 73, 85, 83, 95, 84, 0, 7, 15, 27, 44,
37, 36, 20, 51, 65, 44, 64, 59, 73, 69, 78, 81, 90, 97, 89, 72,
85, 74, 62, 68, 59, 52, 48, 43, 50, 34, 21, 18, 5, 1, 10, 2,
11, 2, 1, 44), .Dim = c(41, 2), .Dimnames = list(NULL, c("x",
"y")))
Unix <- DAG(

SystemV.3 ~ SystemV.2,
SystemV.2 ~ SystemV.0,
SystemV.0 ~ TS4.0,
TS4.0 ~ Unix.TS3.0 + Unix.TS.PP + CB.Unix.3,
PDP11.SysV ~ CB.Unix.3,
CB.Unix.3 ~ CB.Unix.2,
CB.Unix.2 ~ CB.Unix.1,
Unix.TS.PP ~ CB.Unix.3,

https://www.bioconductor.org
https://www.graphviz.org
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Unix.TS3.0 ~ Unix.TS1.0 + PWB2.0 + USG3.0 + Interdata,
USG3.0 ~ USG2.0,
PWB2.0 ~ Interdata + PWB1.2,
USG2.0 ~ USG1.0,
CB.Unix.1 ~ USG1.0,
PWB1.2 ~ PWB1.0,
USG1.0 ~ PWB1.0,
PWB1.0 ~ FifthEd,
SixthEd ~ FifthEd,
LSX ~ SixthEd,
MiniUnix ~ SixthEd,
Interdata ~ SixthEd,
Wollongong ~ SixthEd,
SeventhEd ~ Interdata,
BSD1 ~ SixthEd,
Xenix ~ SeventhEd,
V32 ~ SeventhEd,
Uniplus ~ SeventhEd,
BSD3 ~ V32,
BSD2 ~ BSD1,
BSD4 ~ BSD3,
BSD4.1 ~ BSD4,
EigthEd ~ SeventhEd + BSD4.1,
NinethEd ~ EigthEd,
Ultrix32 ~ BSD4.2,
BSD4.2 ~ BSD4.1,
BSD4.3 ~ BSD4.2,
BSD2.8 ~ BSD4.1 + BSD2,
BSD2.9 ~ BSD2.8,
Ultrix11 ~ BSD2.8 + V7M + SeventhEd,
V7M ~ SeventhEd
)

drawGraph(Unix, coor=xy, adjust=FALSE)
# dev.print(file="unix.fig", device=xfig) # Edit the graph with Xfig

dSep d-separation

Description

Determines if in a directed acyclic graph two set of nodes a d-separated by a third set of nodes.

Usage

dSep(amat, first, second, cond)

Arguments

amat a Boolean matrix with dimnames, representing the adjacency matrix of a di-
rected acyclic graph. The function does not check if this is the case. See the
function isAcyclic.
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first a vector representing a subset of nodes of the DAG. The vector should be a
character vector of the names of the variables matching the names of the nodes
in rownames(A). It can be also a numeric vector of indices.

second a vector representing another subset of nodes of the DAG. The set second must
be disjoint from first. The mode of second must match the mode of first.

cond a vector representing a conditioning subset of nodes. The set cond must be
disjoint from the other two sets and must share the same mode.

Details

d-separation is a fundamental concept introduced by Pearl (1988).

Value

a logical value. TRUE if first and second are d-separated by cond.

Author(s)

Giovanni M. Marchetti

References

Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Mateo: Morgan Kaufmann.

Lauritzen, S. (1996). Graphical models. Oxford: Clarendon Press.

See Also

DAG, shipley.test, inducedCovGraph

Examples

## Conditioning on a transition node
dSep(DAG(y ~ x, x ~ z), first="y", second="z", cond = "x")
## Conditioning on a collision node (collider)
dSep(DAG(y ~ x, y ~ z), first="x", second="z", cond = "y")
## Conditioning on a source node
dSep(DAG(y ~ x, z ~ x), first="y", second="z", cond = "x")
## Marginal independence
dSep(DAG(y ~ x, y ~ z), first="x", second="z", cond = NULL)
## The DAG defined on p.~47 of Lauritzen (1996)
dag <- DAG(g ~ x, h ~ x+f, f ~ b, x ~ l+d, d ~ c, c ~ a, l ~ y, y ~ b)
dSep(dag, first="a", second="b", cond=c("x", "y"))
dSep(dag, first="a", second=c("b", "d"), cond=c("x", "y"))
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edgematrix Edge matrix of a graph

Description

Transforms the adjacency matrix of a graph into an “edge matrix”.

Usage

edgematrix(E, inv=FALSE)

Arguments

E a square matrix, representing the adjacency matrix of a graph.
inv a logical value.

Details

In some matrix computations for graph objects the adjacency matrix of the graph is transformed
into an “edge matrix”. Briefly, if E is the adjacency matrix of the graph, the edge matrix is A =
sign(E + I)T = [aij ]. Thus, A has ones along the diagonal and if the graph has no edge between
nodes i and j the entries ai,j and aj,i are both zero. If there is an arrow from j to i ai,j = 1 and
aj,i = 0. If there is an undirected edge, both ai,j = aj,i = 1.

Value

A the edge matrix of the graph. If TRUE the nodes are sorted in inverted topological
order and the edge matrix is upper triangular.

Author(s)

Giovanni M. Marchetti

References

Wermuth, N. (2003). Analysing social science data with graphical Markov models. In: Highly
Structured Stochastic Systems. P. Green, N. Hjort & T. Richardson (eds.), 47–52. Oxford: Oxford
University Press.

See Also

adjMatrix

Examples

amat <- DAG(y ~ x+z, z~u+v)
amat
edgematrix(amat)
edgematrix(amat, inv=TRUE)
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essentialGraph Essential graph

Description

Find the essential graph from a given directed acyclic graph.

Usage

essentialGraph(dagx)

Arguments

dagx a square binary matrix, the adjacency matrix of a directed acyclic graph. The
names of rows and of the columns are the nodes of the DAG.

Details

Converts a DAG into the Essential Graph. Is implemented by the algorithm by D.M.Chickering
(1995).

Value

returns the adjacency matrix of the essential graph.

Author(s)

Giovanni M. Marchetti, from a MATLAB function by Tomas Kocka, AAU

References

Chickering, D.M. (1995). A transformational characterization of equivalent Bayesian network
structures. Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal,
QU, 87-98. Morgan Kaufmann.

See Also

DAG, InducedGraphs

Examples

dag = DAG(U ~ Y+Z, Y~X, Z~X)
essentialGraph(dag)
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findPath Finding paths

Description

Finds one path between two nodes of a graph.

Usage

findPath(amat, st, en, path = c())

Arguments

amat a square Boolean matrix with dimnames, the adjacency matrix of a graph.

st an integer, the starting node.

en an integer, the ending node.

path a vector of integers, used in recursive calls. At the beginning is NULL. It should
not be modified by the user.

Value

a vector of integers, the sequence of nodes of a path, starting from st to en. In some graphs
(spanning trees) there is only one path between two nodes.

Note

This function is not intended to be directly called by the user.

Author(s)

Giovanni M. Marchetti, translating the original Python code (see references).

References

Python Softftware Foundation (2003). Python Patterns — Implementing Graphs. https://www.
python.org/doc/essays/graphs/.

See Also

fundCycles

Examples

## A (single) path on a spanning tree
findPath(bfsearch(UG(~ a*b*c + b*d + d*e+ e*c))$tree, st=1, en=5)

https://www.python.org/doc/essays/graphs/
https://www.python.org/doc/essays/graphs/
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fitAncestralGraph Fitting of Gaussian Ancestral Graph Models

Description

Iterative conditional fitting of Gaussian Ancestral Graph Models.

Usage

fitAncestralGraph(amat, S, n, tol = 1e-06)

Arguments

amat a square matrix, representing the adjacency matrix of an ancestral graph.
S a symmetric positive definite matrix with row and col names, the sample covari-

ance matrix.
n the sample size, a positive integer.
tol a small positive number indicating the tolerance used in convergence checks.

Details

In the Gaussian case, the models can be parameterized using precision parameters, regression co-
efficients, and error covariances (compare Richardson and Spirtes, 2002, Section 8). This function
finds the MLE Λ̂ of the precision parameters by fitting a concentration graph model. The MLE
B̂ of the regression coefficients and the MLE Ω̂ of the error covariances are obtained by iterative
conditional fitting (Drton and Richardson, 2003, 2004). The three sets of parameters are combined
to the MLE Σ̂ of the covariance matrix by matrix multiplication:

Σ̂ = B̂−1(Λ̂ + Ω̂)B̂−T .

Note that in Richardson and Spirtes (2002), the matrices Λ and Ω are defined as submatrices.

Value

Shat the fitted covariance matrix.
Lhat matrix of the fitted precisions associated with undirected edges and vertices that

do not have an arrowhead pointing at them.
Bhat matrix of the fitted regression coefficients associated to the directed edges. Pre-

cisely said Bhat contains ones on the diagonal and the off-diagonal entry (i, j)
equals the negated MLE of the regression coefficient for variable j in the regres-
sion of variable i on its parents. Note that this (i, j) entry in Bhat corresponds to
a directed edge j → i, and thus to a one as (j, i) entry in the adjacency matrix.

Ohat matrix of the error covariances and variances of the residuals between regres-
sion equations associated with bi-directed edges and vertices with an arrowhead
pointing at them.

dev the ‘deviance’ of the model.
df the degrees of freedom.
it the iterations.
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Author(s)

Mathias Drton

References

Drton, M. and Richardson, T. S. (2003). A new algorithm for maximum likelihood estimation in
Gaussian graphical models for marginal independence. Proceedings of the Nineteenth Conference
on Uncertainty in Artificial Intelligence, 184-191.

Drton, M. and Richardson, T. S. (2004). Iterative Conditional Fitting for Gaussian Ancestral Graph
Models. Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, Department
of Statistics, 130-137.

Richardson, T. S. and Spirtes, P. (2002). Ancestral Graph Markov Models. Annals of Statistics.
30(4), 962-1030.

See Also

fitCovGraph, icf, makeMG, fitDag

Examples

## A covariance matrix
"S" <- structure(c(2.93, -1.7, 0.76, -0.06,

-1.7, 1.64, -0.78, 0.1,
0.76, -0.78, 1.66, -0.78,
-0.06, 0.1, -0.78, 0.81), .Dim = c(4,4),
.Dimnames = list(c("y", "x", "z", "u"), c("y", "x", "z", "u")))

## The following should give the same fit.
## Fit an ancestral graph y -> x <-> z <- u
fitAncestralGraph(ag1 <- makeMG(dg=DAG(x~y,z~u), bg = UG(~x*z)), S, n=100)

## Fit an ancestral graph y <-> x <-> z <-> u
fitAncestralGraph(ag2 <- makeMG(bg= UG(~y*x+x*z+z*u)), S, n=100)

## Fit the same graph with fitCovGraph
fitCovGraph(ag2, S, n=100)

## Another example for the mathematics marks data

data(marks)
S <- var(marks)
mag1 <- makeMG(bg=UG(~mechanics*vectors*algebra+algebra*analysis*statistics))
fitAncestralGraph(mag1, S, n=88)

mag2 <- makeMG(ug=UG(~mechanics*vectors+analysis*statistics),
dg=DAG(algebra~mechanics+vectors+analysis+statistics))

fitAncestralGraph(mag2, S, n=88) # Same fit as above
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fitConGraph Fitting a Gaussian concentration graph model

Description

Fits a concentration graph (a covariance selection model).

Usage

fitConGraph(amat, S, n, cli = NULL, alg = 3, pri = FALSE, tol = 1e-06)

Arguments

amat a square Boolean matrix representing the adjacency matrix of an UG

S the sample covariance matrix

n an integer denoting the sample size

cli a list containing the cliques of the graph. The components of the list are char-
acter vectors containing the names of the nodes in the cliques. The names must
match the names of the vertices. The knowledge of the cliques is not needed.
If the cliques are not specified the function uses the algorithm by Hastie et al.
(2009, p. 446).

alg The algorithm used.

pri If TRUE is verbose

tol a small positive number indicating the tolerance used in convergence tests.

Details

The algorithms for fitting concentration graph models by maximum likelihood are discussed in
Speed and Kiiveri (1986). If the cliques are known the function uses the iterative proportional
fitting algorithm described by Whittaker (1990, p. 184). If the cliques are not specified the function
uses the algorithm by Hastie et al. (2009, p. 631ff).

Value

Shat the fitted covariance matrix.

dev the ‘deviance’ of the model.

df the degrees of freedom.

it the iterations.

Author(s)

Giovanni M. Marchetti
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References

Cox, D. R. & Wermuth, N. (1996). Multivariate dependencies. London: Chapman & Hall.

Hastie, T., Tibshirani, R. and Friedman, J. (2009). The elements of statistical learning. Springer
Verlag: New York.

Speed, T.P. and Kiiveri, H (1986). Gaussian Markov distributions over finite graphs. Annals of
Statistics, 14, 138–150.

Whittaker, J. (1990). Graphical models in applied multivariate statistics. Chichester: Wiley.

See Also

UG, fitDag, marks

Examples

## A model for the mathematics marks (Whittaker, 1990)
data(marks)
## A butterfly concentration graph
G <- UG(~ mechanics*vectors*algebra + algebra*analysis*statistics)
fitConGraph(G, cov(marks), nrow(marks))
## Using the cliques

cl = list(c("mechanics", "vectors", "algebra"), c("algebra", "analysis" , "statistics"))
fitConGraph(G, S = cov(marks), n = nrow(marks), cli = cl)

fitCovGraph Fitting of Gaussian covariance graph models

Description

Fits a Gaussian covariance graph model by maximum likelihood.

Usage

fitCovGraph(amat, S,n ,alg = "icf", dual.alg = 2, start.icf = NULL, tol = 1e-06)

Arguments

amat A symmetric Booloean matrix with dimnames representing the adjacency matrix
of an UG.

S A symmetric positive definite matrix with dimnames, the sample covariance
matrix.

n A positive integer, the sample size.

alg A character string, the algorithm used. If alg="icf" (the default) the algorithm
is based on iterative conditional fitting (see Drton and Richardson, 2003). In this
case the ML estimates are returned. If alg="dual" the algorithm is based on the
dual likelihood (see Kauermann, 1996). The fitted values are an approximation
of the ML estimates.
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dual.alg And integer equal to 1 or 2. It is used if alg="dual". In this case a con-
centration graph model is fitted to the inverse of the sample covariance ma-
trix, and dual.alg is passed to fitConGraph to specify the algorithm used in
fitConGraph.

start.icf A symmetric matrix used as starting value of the algorithm. If start=NULL
the starting value is a diagonal matrix with diagonal entries equal to sample
variances.

tol A small positive number indicating the tolerance used in convergence tests.

Details

A covariance graph is an undirected graph in which the variables associated to two non-adjacent
nodes are marginally independent. The edges of these models are represented by bi-directed edges
(Drton and Richardson, 2003) or by dashed lines (Cox and Wermuth, 1996).

By default, this function gives the ML estimates in the covariance graph model, by iterative con-
ditional fitting (Drton and Richardson, 2003). Otherwise, the estimates from a “dual likelihood”
estimator can be obtained (Kauermann, 1996; Edwards, 2000, section 7.4).

Value

Shat the fitted covariance matrix.

dev the ‘deviance’ of the model.

df the degrees of freedom.

it the iterations.

Author(s)

Mathias Drton

References

Cox, D. R. & Wermuth, N. (1996). Multivariate dependencies. London: Chapman & Hall.

Drton, M. and Richardson, T. S. (2003). A new algorithm for maximum likelihood estimation in
Gaussian graphical models for marginal independence. Proceedings of the Nineteenth Conference
on Uncertainty in Artificial Intelligence, 184–191.

Kauermann, G. (1996). On a dualization of graphical Gaussian models. Scandinavian Journal of
Statistics. 23, 105–116.

See Also

fitConGraph, icf
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Examples

## Correlations among four strategies to cope with stress for
## 72 students. Cox & Wermuth (1996), p. 73.

data(stress)

## A chordless 4-cycle covariance graph
G <- UG(~ Y*X + X*U + U*V + V*Y)

fitCovGraph(G, S = stress, n=72)
fitCovGraph(G, S = stress, n=72, alg="dual")

fitDag Fitting of Gaussian DAG models

Description

Fits linear recursive regressions with independent residuals specified by a DAG.

Usage

fitDag(amat, S, n)

Arguments

amat a square matrix with dimnames representing the adjacency matrix of the DAG

S a symmetric positive definite matrix, the sample covariance matrix

n an integer > 0, the sample size

Details

fitDag checks if the order of the nodes in adjacency matrix is the same of S and if not it reorders
the adjacency matrix to match the order of the variables in S. The nodes of the adjacency matrix
may form a subset of the variables in S.

Value

Shat the fitted covariance matrix.

Ahat a square matrix of the fitted regression coefficients. The entry Ahat[i,j] is
minus the regression coefficient of variable i in the regression equation j. Thus
there is a non zero partial regression coefficient Ahat[i,j] corresponding to
each non zero value amat[j,i] in the adjacency matrix.

Dhat a vector containing the partial variances of each variable given the parents.

dev the ‘deviance’ of the model.

df the degrees of freedom.
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Author(s)

Giovanni M. Marchetti

References

Cox, D. R. & Wermuth, N. (1996). Multivariate dependencies. London: Chapman & Hall.

See Also

DAG, swp.

Examples

dag <- DAG(y ~ x+u, x ~ z, z ~ u)
"S" <- structure(c(2.93, -1.7, 0.76, -0.06,

-1.7, 1.64, -0.78, 0.1,
0.76, -0.78, 1.66, -0.78,
-0.06, 0.1, -0.78, 0.81), .Dim = c(4,4),

.Dimnames = list(c("y", "x", "z", "u"), c("y", "x", "z", "u")))
fitDag(dag, S, 200)

fitDagLatent Fitting Gaussian DAG models with one latent variable

Description

Fits by maximum likelihood a Gaussian DAG model where one of the nodes of the graph is latent
and it is marginalised over.

Usage

fitDagLatent(amat, Syy, n, latent, norm = 1, seed,
maxit = 9000, tol = 1e-06, pri = FALSE)

Arguments

amat a square matrix with dimnames representing the adjacency matrix of the DAG.

Syy a symmetric positive definite matrix, with dimnames, the sample covariance
matrix of the observed variables. The set of the observed nodes of the graph
must be a subset of the set of the names of the variables in Syy.

n a positive integer, the sample size.

latent the name of the latent variable.

norm an integer, the kind of normalization of the latent variable. If norm=1, the latent
is scaled to have unit variance. If norm=2, the latent is scaled to have unit partial
variance given its parents.

seed an integer, used by set.seed to specify a random starting point of the EM algo-
rithm.
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maxit an integer denoting the maximum number of iterations allowed for the EM al-
gorithm. If the convergence criterion is not satisfied within maxit iterations the
algorithms stops and a warning message is returned.

tol a small real value, denoting the tolerance used in testing convergence.

pri logical, if pri=TRUE then the value of the deviance at each iteration is printed.

Details

For the EM algorithm used see Kiiveri (1987).

Value

Shat the fitted covariance matrix of all the variables including the latent one. The
latent variable is the last. If norm=1 then the variance of the latent variable is
constrained to 1.

Ahat a square matrix of the fitted regression coefficients. The entry Ahat[i,j] is
minus the regression coefficient of variable i in the regression equation j. Thus
there is a non zero partial regression coefficient Ahat[i,j] corresponding to
each non zero value amat[j,i] in the adjacency matrix.

Dhat a vector containing the partial variances of each variable given the parents. If
norm=2 then the partial variance of the latent variable is constrained to 1.

dev the ‘deviance’ of the model.

df the degrees of freedom of the model.

it the number of EM algorithm iterations at convergence.

Author(s)

Giovanni M. Marchetti

References

Kiiveri,H. T. (1987). An incomplete data approach to the analysis of covariance structures. Psy-
chometrika, 52, 4, 539–554.

Joreskog, K.G. and Goldberger, A.S. (1975). Estimation of a model with multiple indicators and
multiple causes of a single latent variable. Journal of the American Statistical Association, 10,
631–639.

See Also

fitDag, checkIdent

Examples

## data from Joreskog and Goldberger (1975)
V <- matrix(c(1, 0.36, 0.21, 0.10, 0.156, 0.158,

0.36, 1, 0.265, 0.284, 0.192, 0.324,
0.210, 0.265, 1, 0.176, 0.136, 0.226,
0.1, 0.284, 0.176, 1, 0.304, 0.305,



38 fitmlogit

0.156, 0.192, 0.136, 0.304, 1, 0.344,
0.158, 0.324, 0.226, 0.305, 0.344, 1), 6,6)

nod <- c("y1", "y2", "y3", "x1", "x2", "x3")
dimnames(V) <- list(nod,nod)
dag <- DAG(y1 ~ z, y2 ~ z, y3 ~ z, z ~ x1 + x2 + x3, x1~x2+x3, x2~x3)
fitDagLatent(dag, V, n=530, latent="z", seed=4564)
fitDagLatent(dag, V, n=530, latent="z", norm=2, seed=145)

fitmlogit Multivariate logistic models

Description

Fits a logistic regression model to multivariate binary responses.

Usage

fitmlogit(..., C = c(), D = c(), data, mit = 100, ep = 1e-80, acc = 1e-04)

Arguments

... Model formulae of marginal logistic models for each response and for each as-
sociation parameters (log-odds ratios).

C Matrix of equality constraints.

D Matrix of inequality cosntraints.

data A data frame containing the responses and the explanatory variables.

mit A positive integer: maximum number of iterations. Default: 100.

ep A tolerance used in the algorithm: default 1e-80.

acc A tolerance used in the algorithm: default 1e-4.

Details

See Evans and Forcina (2011).

Value

LL The maximized log-likelihood.

be The vector of the Maximum likelihood estimates of the parameters.

S The estimated asymptotic covariance matrix.

P The estimated cell probabilities for each individual.

Author(s)

Antonio Forcina, Giovanni M. Marchetti



fundCycles 39

References

Evans, R.J. and Forcina, A. (2013). Two algorithms for fitting constrained marginal models. Com-
putational Statistics and Data Analysis, 66, 1-7.

See Also

glm

Examples

data(surdata)
out1 <- fitmlogit(A ~X, B ~ Z, cbind(A, B) ~ X*Z, data = surdata)
out1$beta
out2 <- fitmlogit(A ~X, B ~ Z, cbind(A, B) ~ 1, data = surdata)
out2$beta

fundCycles Fundamental cycles

Description

Finds the list of fundamental cycles of a connected undirected graph.

Usage

fundCycles(amat)

Arguments

amat a symmetric matrix with dimnames denoting the adjacency matrix of the undi-
rected graph. The graph must be connected, otherwise the function returns an
error message.

Details

All the cycles in an UG can be obtained from combination (ring sum) of the set of fundamental
cycles.

Value

a list of matrices with two columns. Every component of the list is associated to a cycle. The cycle
is described by a k×2 matrix whose rows are the edges of the cycle. If there is no cycle the function
returns NULL.

Note

This function is used by cycleMatrix and isGident.
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Author(s)

Giovanni M. Marchetti

References

Thulasiraman, K. & Swamy, M.N.S. (1992). Graphs: theory and algorithms. New York: Wiley.

See Also

UG,findPath, cycleMatrix, isGident,bfsearch

Examples

## Three fundamental cycles
fundCycles(UG(~a*b*d + d*e + e*a*f))

ggm The package ggm: summary information

Description

This package provides functions for defining, manipulating and fitting graphical Markov models
with mixed graphs. It is intended as a contribution to the gR-project described by Lauritzen (2002).

For a tutorial illustrating the new functions in the package ‘ggm‘ that deal with ancestral, summary
and ribbonless graphs see Sadeghi and Marchetti (2012) in the references.

Functions

The main functions can be classified as follows.

• Functions for defining graphs (undirected, directed acyclic, ancestral and summary graphs):
UG, DAG, makeMG, grMAT;

• Functions for doing graph operations (parents, boundary, cliques, connected components, fun-
damental cycles, d-separation, m-separation): pa, bd, cliques, conComp, fundCycles;

• Functions for testing independence statements and generating maximal graphs from non-
maximal graphs: dSep, msep, Max;

• Function for finding covariance and concentration graphs induced by marginalization and con-
ditioning: inducedCovGraph, inducedConGraph;

• Functions for finding multivariate regression graphs and chain graphs induced by marginal-
ization and conditioning: inducedRegGraph, inducedChainGraph, inducedDAG;

• Functions for finding stable mixed graphs (ancestral, summary and ribbonless) after marginal-
ization and conditioning: AG, SG, RG;

• Functions for fitting by ML Gaussian DAGs, concentration graphs, covariance graphs and
ancestral graphs: fitDag, fitConGraph, fitCovGraph, fitAncestralGraph;

• Functions for testing several conditional independences:shipley.test;
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• Functions for checking global identification of DAG Gaussian models with one latent vari-
able (Stanghellini-Vicard’s condition for concentration graphs, new sufficient conditions for
DAGs): isGident, checkIdent;

• Functions for fitting Gaussian DAG models with one latent variable: fitDagLatent;

• Functions for testing Markov equivalences and generating Markov equivalent graphs of spe-
cific types: MarkEqRcg, MarkEqMag, RepMarDAG, RepMarUG, RepMarBG.

Authors

Giovanni M. Marchetti, Dipartimento di Statistica, Informatica, Applicazioni ’G. Parenti’. Univer-
sity of Florence, Italy

Mathias Drton, Department of Statistics, University of Washington, USA

Kayvan Sadeghi, Department of Statistics, Carnegie Mellon University, USA
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glucose Glucose control

Description

Data on glucose control of diabetes patients.

Usage

data(glucose)

https://journal.r-project.org/archive/2012/RJ-2012-015/RJ-2012-015.pdf
https://journal.r-project.org/archive/2012/RJ-2012-015/RJ-2012-015.pdf
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Format

A data frame with 68 observations on the following 8 variables.

Y a numeric vector, Glucose control (glycosylated haemoglobin), values up to about 7 or 8 indicate
good glucose control.

X a numeric vector, a score for knowledge about the illness.

Z a numeric vector, a score for fatalistic externality (mere chance determines what occurs).

U a numeric vector, a score for social externality (powerful others are responsible).

V a numeric vector, a score for internality (the patient is him or herself responsible).

W a numeric vector, duration of the illness in years.

A a numeric vector, level of education, with levels -1: at least 13 years of formal schooling, 1: less
then 13 years.

B a numeric vector, gender with levels -1: females, 1: males.

Details

Data on 68 patients with fewer than 25 years of diabetes. They were collected at the University
of Mainz to identify psychological and socio-economic variables possibly important for glucose
control, when patients choose the appropriate dose of treatment depending on the level of blood
glucose measured several times per day.

The variable of primary interest is Y, glucose control, measured by glycosylated haemoglobin. X,
knowledge about the illness, is a response of secondary interest. Variables Z, U and V measure
patients’ type of attribution, called fatalistic externality, social externality and internality. These are
intermediate variables. Background variables are W, the duration of the illness, A the duration of
formal schooling and B, gender. The background variables A and B are binary variables with coding
-1, 1.

Source

Cox & Wermuth (1996), p. 229.

References

Cox, D. R. & Wermuth, N. (1996). Multivariate dependencies. London: Chapman & Hall.

Examples

data(glucose)
## See Cox & Wermuth (1996), Figure 6.3 p. 140
coplot(Y ~ W | A, data=glucose)



grMAT 43

grMAT Graph to adjacency matrix

Description

grMAT generates the associated adjacency matrix to a given graph.

Usage

grMAT(agr)

Arguments

agr A graph that can be a graphNEL or an igraph object or a vector of length 3e,
where e is the number of edges of the graph, that is a sequence of triples (type,
node1label, node2label). The type of edge can be "a" (arrows from node1 to
node2), "b" (arcs), and "l" (lines).

Value

A matrix that consists 4 different integers as an ij-element: 0 for a missing edge between i and j, 1
for an arrow from i to j, 10 for a full line between i and j, and 100 for a bi-directed arrow between i
and j. These numbers are added to be associated with multiple edges of different types. The matrix
is symmetric w.r.t full lines and bi-directed arrows.

Author(s)

Kayvan Sadeghi

Examples

## Generating the adjacency matrix from a vector
exvec <-c ('b',1,2,'b',1,14,'a',9,8,'l',9,11,'a',10,8,

'a',11,2,'a',11,10,'a',12,1,'b',12,14,'a',13,10,'a',13,12)
grMAT(exvec)

In Indicator matrix

Description

Finds the indicator matrix of the zeros of a matrix.

Usage

In(A)
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Arguments

A a matrix.

Details

The indicator matrix is a matrix of zeros and ones which has a zero element iff the corresponding
element of A is (exactly) zero.

Value

a matrix of the same dimensions as A.

Author(s)

Giovanni M. Marchetti

References

Wermuth, N. & Cox, D.R. (2004). Joint response graphs and separation induced by triangular
systems. J.R. Statist. Soc. B, 66, Part 3, 687-717.

See Also

DAG, inducedCovGraph, inducedConGraph

Examples

## A simple way to find the overall induced concentration graph
## The DAG on p. 198 of Cox & Wermuth (1996)
amat <- DAG(y1 ~ y2 + y3, y3 ~ y5, y4 ~ y5)
A <- edgematrix(amat)
In(crossprod(A))

InducedGraphs Graphs induced by marginalization or conditioning

Description

Functions to find induced graphs after conditioning on a set of variables and marginalizing over
another set.

Usage

inducedCovGraph(amat, sel = rownames(amat), cond = NULL)
inducedConGraph(amat, sel = rownames(amat), cond = NULL)
inducedRegGraph(amat, sel = rownames(amat), cond = NULL)
inducedChainGraph(amat, cc=rownames(amat), cond = NULL, type="LWF")
inducedDAG(amat, order, cond = NULL)
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Arguments

amat a square Boolean matrix, the adjacency matrix of a directed acyclic graph. The
names of rows and of the columns are the nodes of the DAG.

sel a character vector representing a subset of selected variables. The elements of
the vector must be a subset of the names of the nodes i.e. of rownames(A). By
default sel is the set of the nodes of the DAG.

cond a character vector representing the variables on which you want to condition.
cond must be disjoint from sel and their union must be a subset of the set of
nodes. The set difference between the set of nodes and the union of sel and
cond are the variables over which we marginalize. cond may be the null vector
(the default), meaning that you want to condition on the empty set.

cc a list of character vectors specifying the chain components for the chain graph.

type a string indicating the interpretation of the chain graph. It can be either "LWF"
(Lauritzen, Wermuth, Frydenberg interpretation), "AMP" (Andersson, Madi-
gan, Perlman interpretation) or "MRG" (Multivariate regression graph interpre-
tation).

order a character vector indicating the ordering of the vertices of a DAG (left to right,
past to future).

Details

Given a directed acyclic graph representing a set of conditional independencies it is possible to
obtain other graphs of conditional independence implied after marginalizingover and conditionig
on sets of nodes. Such graphs are the covariance graph, the concentration graph, the multivariate
regression graph and the chain graph with different interpretations (see Cox & Wermuth, 1996,
2004).

Value

inducedCovGraph returns the adjacency matrix of the covariance graph of the variables in set sel
given the variables in set cond, implied by the original directed acyclic graph with adjacency matrix
amat.

inducedConGraph returns the adjacency matrix of the concentration graph of the variables in set
sel given the variables in set cond, implied by the original directed acyclic graph with adjacency
matrix amat.

inducedRegGraph returns the adjacency matrix of the multivariate regression graph of the vari-
ables in set sel given the variables in set cond, implied by the original directed acyclic graph with
adjacency matrix amat.

inducedChainGraph returns the adjacency matrix of the chain graph for the variables in chain
components cc, given the variables in set cond, with interpretation specified by string type, implied
by the original directed acyclic graph with adjacency matrix amat.

inducedDAG returns the adjacency matrix of the DAG with the ordering order, implied by the
original directed acyclic graph with adjacency matrix amat.
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Note

If sel is NULL the functions return the null matrix. If cond is NULL, the conditioning set is empty
and the functions inducedConGraph and inducedCovGraph return the overall induced covariance
or concentration matrices of the selected variables. If you do not specify sel you cannot specify a
non NULL value of cond.

Author(s)

Giovanni M. Marchetti

References

Cox, D. R. & Wermuth, N. (1996). Multivariate dependencies. London: Chapman & Hall.

Wermuth, N. & Cox, D.R. (2004). Joint response graphs and separation induced by triangular
systems. J.R. Statist. Soc. B, 66, Part 3, 687-717.

See Also

DAG, UG,isAcyclic

Examples

## Define a DAG
dag <- DAG(a ~ x, c ~ b+d, d~ x)
dag
## Induced covariance graph of a, b, d given the empty set.
inducedCovGraph(dag, sel=c("a", "b", "d"), cond=NULL)

## Induced concentration graph of a, b, c given x
inducedConGraph(dag, sel=c("a", "b", "c"), cond="x")

## Overall covariance graph
inducedCovGraph(dag)

## Overall concentration graph
inducedConGraph(dag)

## Induced covariance graph of x, b, d given c, x.
inducedCovGraph(dag, sel=c("a", "b", "d"), cond=c("c", "x"))

## Induced concentration graph of a, x, c given d, b.
inducedConGraph(dag, sel=c("a", "x", "c"), cond=c("d", "b"))

## The DAG on p. 198 of Cox & Wermuth (1996)
dag <- DAG(y1~ y2 + y3, y3 ~ y5, y4 ~ y5)

## Cf. figure 8.7 p. 203 in Cox & Wermuth (1996)
inducedCovGraph(dag, sel=c("y2", "y3", "y4", "y5"), cond="y1")
inducedCovGraph(dag, sel=c("y1", "y2", "y4", "y5"), cond="y3")
inducedCovGraph(dag, sel=c("y1", "y2", "y3", "y4"), cond="y5")
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## Cf. figure 8.8 p. 203 in Cox & Wermuth (1996)
inducedConGraph(dag, sel=c("y2", "y3", "y4", "y5"), cond="y1")
inducedConGraph(dag, sel=c("y1", "y2", "y4", "y5"), cond="y3")
inducedConGraph(dag, sel=c("y1", "y2", "y3", "y4"), cond="y5")

## Cf. figure 8.9 p. 204 in Cox & Wermuth (1996)
inducedCovGraph(dag, sel=c("y2", "y3", "y4", "y5"), cond=NULL)
inducedCovGraph(dag, sel=c("y1", "y2", "y4", "y5"), cond=NULL)
inducedCovGraph(dag, sel=c("y1", "y2", "y3", "y4"), cond=NULL)

## Cf. figure 8.10 p. 204 in Cox & Wermuth (1996)
inducedConGraph(dag, sel=c("y2", "y3", "y4", "y5"), cond=NULL)
inducedConGraph(dag, sel=c("y1", "y2", "y4", "y5"), cond=NULL)
inducedConGraph(dag, sel=c("y1", "y2", "y3", "y4"), cond=NULL)

## An induced regression graph
dag2 = DAG(Y ~ X+U, W ~ Z+U)
inducedRegGraph(dag2, sel="W", cond=c("Y", "X", "Z"))

## An induced DAG
inducedDAG(dag2, order=c("X","Y","Z","W"))

## An induced multivariate regression graph
inducedRegGraph(dag2, sel=c("Y", "W"), cond=c("X", "Z"))

## An induced chain graph with LWF interpretation
dag3 = DAG(X~W, W~Y, U~Y+Z)
cc = list(c("W", "U"), c("X", "Y", "Z"))
inducedChainGraph(dag3, cc=cc, type="LWF")

## ... with AMP interpretation
inducedChainGraph(dag3, cc=cc, type="AMP")

## ... with multivariate regression interpretation
cc= list(c("U"), c("Z", "Y"), c("X", "W"))
inducedChainGraph(dag3, cc=cc, type="MRG")

isAcyclic Graph queries

Description

Checks if a given graph is acyclic.

Usage

isAcyclic(amat, method = 2)
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Arguments

amat a square Boolean matrix with dimnames, the adjacency matrix of a graph.

method an integer 1 or 2 specifying the method used. If method=1 the function calls the
function clusters in package igraph to find the strong components: two nodes
v and w are in the same strong component iff there are directed paths from v to
w and from w to v. If method=2 the function uses the ggm function transClos.
Method 1 is faster.

Value

a logical value, TRUE if the graph is acyclic and FALSE otherwise.

Author(s)

David Edwards, Giovanni M. Marchetti

References

Aho, A.V., Hopcroft, J.E. & Ullman, J.D. (1983). Data structures and algorithms. Reading:
Addison-Wesley.

Examples

## A cyclic graph
d <- matrix(0,3,3)
rownames(d) <- colnames(d) <- c("x", "y", "z")
d["x","y"] <- d["y", "z"] <- d["z", "x"] <- 1
## Test if the graph is acyclic
isAcyclic(d)
isAcyclic(d, method = 1)

isADMG Acyclic directed mixed graphs

Description

Check if it is an adjacency matrix of an ADMG

Usage

isADMG(amat)

Arguments

amat An adjacency matrix.
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Details

Checks if the following conditions must hold: (i) no undirected edge meets an arrowhead; (ii) no
directed cycles;

Value

A logical value, TRUE if it is an ancestral graph and FALSE otherwise.

Author(s)

Giovanni M. Marchetti, Mathias Drton

References

Richardson, T. S. and Spirtes, P. (2002). Ancestral Graph Markov Models. Annals of Statistics,
30(4), 962–1030.

See Also

makeMG, isADMG

Examples

## Examples from Richardson and Spirtes (2002)
a1 <- makeMG(dg=DAG(a~b, b~d, d~c), bg=UG(~a*c))
isADMG(a1) # Not an AG. (a2) p.969
a2 <- makeMG(dg=DAG(b ~ a, d~c), bg=UG(~a*c+c*b+b*d)) # Fig. 3 (b1) p.969
isADMG(a2)

isAG Ancestral graph

Description

Check if it is an adjacency matrix of an ancestral graph

Usage

isAG(amat)

Arguments

amat An adjacency matrix.

Details

Checks if the following conditions must hold: (i) no undirected edge meets an arrowhead; (ii) no
directed cycles; (iii) spouses cannot be ancestors. For details see Richardson and Spirtes (2002).
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Value

A logical value, TRUE if it is an ancestral graph and FALSE otherwise.

Author(s)

Giovanni M. Marchetti, Mathias Drton

References

Richardson, T. S. and Spirtes, P. (2002). Ancestral Graph Markov Models. Annals of Statistics,
30(4), 962–1030.

See Also

makeMG, isADMG

Examples

## Examples from Richardson and Spirtes (2002)
a1 <- makeMG(dg=DAG(a~b, b~d, d~c), bg=UG(~a*c))
isAG(a1) # Not an AG. (a2) p.969
a2 <- makeMG(dg=DAG(b ~ a, d~c), bg=UG(~a*c+c*b+b*d)) # Fig. 3 (b1) p.969
isAG(a2)

isGident G-identifiability of an UG

Description

Tests if an undirected graph is G-identifiable.

Usage

isGident(amat)

Arguments

amat a symmetric matrix with dimnames representing the adjacency matrix of an
undirected graph

Details

An undirected graph is said G-identifiable if every connected component of the complementary
graph contains an odd cycle (Stanghellini and Wermuth, 2005). See also Tarantola and Vicard
(2002).

Value

a logical value, TRUE if the graph is G-identifiable and FALSE if it is not.
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Author(s)

Giovanni M. Marchetti

References

Stanghellini, E. & Wermuth, N. (2005). On the identification of path-analysis models with one
hidden variable. Biometrika, 92(2), 337-350.

Stanghellini, E. (1997). Identification of a single-factor model using graphical Gaussian rules.
Biometrika, 84, 241–244.

Tarantola, C. & Vicard, P. (2002). Spanning trees and identifiability of a single-factor model. Sta-
tistical Methods & Applications, 11, 139–152.

Vicard, P. (2000). On the identification of a single-factor model with correlated residuals. Biometrika,
87, 199–205.

See Also

UG, cmpGraph, cycleMatrix

Examples

## A not G-identifiable UG
G1 <- UG(~ a*b + u*v)
isGident(G1)
## G-identifiable UG
G2 <- UG(~ a + b + u*v)
isGident(G2)
## G-identifiable UG
G3 <- cmpGraph(UG(~a*b*c+x*y*z))
isGident(G3)

MAG Maximal ancestral graph

Description

MAG generates and plots maximal ancestral graphs after marginalisation and conditioning.

Usage

MAG(amat,M=c(),C=c(),showmat=TRUE,plot=FALSE, plotfun = plotGraph, ...)
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Arguments

amat An adjacency matrix, or a graph that can be a graphNEL or an igraph object
or a vector of length 3e, where e is the number of edges of the graph, that is a
sequence of triples (type, node1label, node2label). The type of edge can be "a"
(arrows from node1 to node2), "b" (arcs), and "l" (lines).

M A subset of the node set of a that is going to be marginalized over

C Another disjoint subset of the node set of a that is going to be conditioned on.

showmat A logical value. TRUE (by default) to print the generated matrix.

plot A logical value, FALSE (by default). TRUE to plot the generated graph.

plotfun Function to plot the graph when plot == TRUE. Can be plotGraph (the default)
or drawGraph.

... Further arguments passed to plotfun.

Details

This function uses the functions AG and Max.

Value

A matrix that consists 4 different integers as an ij-element: 0 for a missing edge between i and j, 1
for an arrow from i to j, 10 for a full line between i and j, and 100 for a bi-directed arrow between i
and j. These numbers are added to be associated with multiple edges of different types. The matrix
is symmetric w.r.t full lines and bi-directed arrows.

Author(s)

Kayvan Sadeghi

References

Richardson, T. S. and Spirtes, P. (2002). Ancestral graph Markov models. Annals of Statistics,
30(4), 962-1030.

Sadeghi, K. (2013). Stable mixed graphs. Bernoulli 19(5B), 2330–2358.

Sadeghi, K. and Lauritzen, S.L. (2014). Markov properties for loopless mixed graphs. Bernoulli
20(2), 676-696.

See Also

AG, Max, MRG, MSG

Examples

ex<-matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, ##The adjacency matrix of a DAG
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
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0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0), 16, 16, byrow = TRUE)

M <- c(3,5,6,15,16)
C <- c(4,7)
MAG(ex, M, C, plot=TRUE)
###################################################
H <- matrix(c(0,100,1,0,100,0,100,0,0,100,0,100,0,1,100,0),4,4)
Max(H)

makeMG Mixed Graphs

Description

Defines a loopless mixed graph from the directed, undirected and undirected components.

Usage

makeMG(dg = NULL, ug = NULL, bg = NULL)

Arguments

dg the adjacency matrix of a directed graph specifying the arrows of the mixed
graph.

ug the adjacency matrix of an undirected graph specifying the lines of the mixed
graph.

bg the adjacency matrix of an undirected graph specifying the bidirected edges of
the mixed graph.

Details

A loopless mixed graph is a mixed graph with three types of edges: undirected, directed and bi-
directed edges. Note that the three adjacency matrices must have labels and may be defined using
the functions DG, DAG or UG. The adjacency matrices of the undirected graphs may be just symmetric
Boolean matrices.
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Value

a square matrix obtained by combining the three graph components into an adjacency matrix of a
mixed graph. The matrix consists of 4 different integers as an ij-element: 0 for a missing edge
between i and j, 1 for an arrow from i to j, 10 for a full line between i and j, and 100 for a bi-
directed arrow between i and j. These numbers are added to be associated with multiple edges of
different types. The matrix is symmetric w.r.t full lines and bi-directed arrows.

Author(s)

Giovanni M. Marchetti, Mathias Drton

References

Richardson, T. S. and Spirtes, P. (2002). Ancestral Graph Markov Models. Annals of Statistics,
30(4), 962–1030.

See Also

UG, DAG

Examples

## Examples from Richardson and Spirtes (2002)
a1 <- makeMG(dg=DAG(a~b, b~d, d~c), bg=UG(~a*c))
isAG(a1) # Not an AG. (a2) p.969
a2 <- makeMG(dg=DAG(b ~ a, d~c), bg=UG(~a*c+c*b+b*d)) # Fig. 3 (b1) p.969
isAG(a1)
a3 <- makeMG(ug = UG(~ a*c), dg=DAG(b ~ a, d~c), bg=UG(~ b*d)) # Fig. 3 (b2) p.969
a5 <- makeMG(bg=UG(~alpha*beta+gamma*delta), dg=DAG(alpha~gamma,
delta~beta)) # Fig. 6 p. 973
## Another Example
a4 <- makeMG(ug=UG(~y0*y1), dg=DAG(y4~y2, y2~y1), bg=UG(~y2*y3+y3*y4))
## A mixed graphs with double edges.
mg <- makeMG(dg = DG(Y ~ X, Z~W, W~Z, Q~X), ug = UG(~X*Q),
bg = UG(~ Y*X+X*Q+Q*W + Y*Z) )
## Chronic pain data: a regression graph
chronic.pain <- makeMG(dg = DAG(Y ~ Za, Za ~ Zb + A, Xa ~ Xb,
Xb ~ U+V, U ~ A + V, Zb ~ B, A ~ B), bg = UG(~Za*Xa + Zb*Xb))

marg.param Link function of marginal log-linear parameterization

Description

Provides the contrast and marginalization matrices for the marginal parametrization of a probability
vector.
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Usage

marg.param(lev, type)

Arguments

lev Integer vector containing the number of levels of each variable.

type A character vector with elements "l", "g", "c", or "r" indicating the type of
logit. The meaning is as follows: "g" for global, "c" for continuation, "r" for
reverse continuation and "l" for local.

Details

See Bartolucci, Colombi and Forcina (2007).

Value

C Matrix of constrasts (the first sum(lev)-length(r) elements are referred to
univariate logits)

M Marginalization matrix with elements 0 and 1.

G Corresponding design matrix for the corresponding log-linear model.

Note

Assumes that the vector of probabilities is in inv lex order. The interactions are returned in order of
dimension, like e.g., 1, 2, 3, 12, 13, 23, 123.

Author(s)

Francesco Bartolucci, Antonio Forcina, Giovanni M. Marchetti

References

Bartolucci, F., Colombi, R. and Forcina, A. (2007). An extended class of marginal link functions
for modelling contingency tables by equality and inequality constraints. Statist. Sinica 17, 691-711.

See Also

mat.mlogit

Examples

marg.param(c(3,3), c("l", "g"))
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MarkEqMag Markov equivalence of maximal ancestral graphs

Description

MarkEqMag determines whether two MAGs are Markov equivalent.

Usage

MarkEqMag(amat, bmat)

Arguments

amat An adjacency matrix of a MAG, or a graph that can be a graphNEL or an igraph
object or a vector of length 3e, where e is the number of edges of the graph, that
is a sequence of triples (type, node1label, node2label). The type of edge can be
"a" (arrows from node1 to node2), "b" (arcs), and "l" (lines).

bmat The same as amat.

Details

The function checks whether the two graphs have the same skeleton and colliders with order.

Value

"Markov Equivalent" or "NOT Markov Equivalent".

Author(s)

Kayvan Sadeghi

References

Ali, R.A., Richardson, T.S. and Spirtes, P. (2009) Markov equivalence for ancestral graphs. Annals
of Statistics, 37(5B),2808-2837.

See Also

MarkEqRcg, msep

Examples

H1<-matrix( c(0,100, 0, 0,
100, 0,100, 0,

0,100, 0,100,
0, 1,100, 0), 4, 4)

H2<-matrix(c(0,0,0,0,1,0,100,0,0,100,0,100,0,1,100,0),4,4)
H3<-matrix(c(0,0,0,0,1,0,0,0,0,1,0,100,0,1,100,0),4,4)
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MarkEqMag(H1,H2)
MarkEqMag(H1,H3)
MarkEqMag(H2,H3)

MarkEqRcg Markov equivalence for regression chain graphs.

Description

MarkEqMag determines whether two RCGs (or subclasses of RCGs) are Markov equivalent.

Usage

MarkEqRcg(amat, bmat)

Arguments

amat An adjacency matrix of an RCG or a graph that can be a graphNEL or an igraph
object or a vector of length 3e, where e is the number of edges of the graph, that
is a sequence of triples (type, node1label, node2label). The type of edge can be
"a" (arrows from node1 to node2), "b" (arcs), and "l" (lines).

bmat The same as amat.

Details

The function checks whether the two graphs have the same skeleton and unshielded colliders.

Value

"Markov Equivalent" or "NOT Markov Equivalent".

Author(s)

Kayvan Sadeghi

References

Wermuth, N. and Sadeghi, K. (2012). Sequences of regressions and their independences. Test
21:215–252.

See Also

MarkEqMag, msep
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Examples

H1<-matrix(c(0,100,0,0,0,100,0,100,0,0,0,100,0,0,0,1,0,0,0,100,0,0,1,100,0),5,5)
H2<-matrix(c(0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,100,0,0,1,100,0),5,5)
H3<-matrix(c(0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0),5,5)
#MarkEqRcg(H1,H2)
#MarkEqRcg(H1,H3)
#MarkEqRcg(H2,H3)

marks Mathematics marks

Description

Examination marks of 88 students in five subjects.

Usage

data(marks)

Format

A data frame with 88 observations on the following 5 variables.

mechanics a numeric vector, mark in Mechanics

vectors a numeric vector, mark in Vectors

algebra a numeric vector, mark in Algebra

analysis a numeric vector, mark in Analysis

statistics a numeric vector, mark in Statistics

Details

Mechanics and Vectors were closed book examinations. Algebra, Analysis and Statistics were open
book examinations.

Source

Mardia, K.V., Kent, J.T. and Bibby, (1979). Multivariate analysis. London: Academic Press.

References

Whittaker, J. (1990). Graphical models in applied multivariate statistics. Chichester: Wiley.

Examples

data(marks)
pairs(marks)
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mat.mlogit Multivariate logistic parametrization

Description

Find matrices C and M of e binary multivariate logistic parameterization.

Usage

mat.mlogit(d, P = powerset(1:d))

Arguments

d A positive integer, the number of binary responses.

P A list of vectors of integers specifying margins. For instance list(1, 2, c(1,2)).
Default: the power set of 1:d.

Details

The power set is in the order of dimensions of the sets.

Value

C A contrast matrix.

L A marginalization matrix.

Author(s)

Giovanni M. Marchetti

References

Glonek, G. J. N. and McCullagh, P. (1995). Multivariate logistic models. Journal of the Royal
Statistical Society, Ser. B 57, 533-546.

See Also

binomial, marg.param

Examples

mat.mlogit(2)
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Max Maximisation for graphs

Description

Max generates a maximal graph that induces the same independence model from a non-maximal
graph.

Usage

Max(amat)

Arguments

amat An adjacency matrix, or a graph that can be a graphNEL or an igraph object
or a vector of length 3e, where e is the number of edges of the graph, that is a
sequence of triples (type, node1label, node2label). The type of edge can be "a"
(arrows from node1 to node2), "b" (arcs), and "l" (lines).

Details

Max looks for non-adjacent pais of nodes that are connected by primitive inducing paths, and connect
such pairs by an appropriate edge.

Value

A matrix that consists 4 different integers as an ij-element: 0 for a missing edge between i and j, 1
for an arrow from i to j, 10 for a full line between i and j, and 100 for a bi-directed arrow between i
and j. These numbers are added to be associated with multiple edges of different types. The matrix
is symmetric w.r.t full lines and bi-directed arrows.

Author(s)

Kayvan Sadeghi

References

Richardson, T.S. and Spirtes, P. (2002). Ancestral graph Markov models. Annals of Statistics, 30(4),
962-1030.

Sadeghi, K. and Lauritzen, S.L. (2014). Markov properties for loopless mixed graphs. Bernoulli
20(2), 676-696.

See Also

MAG, MRG, msep, MSG
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Examples

H <- matrix(c( 0,100, 1, 0,
100, 0,100, 0,

0,100, 0,100,
0, 1,100, 0), 4, 4)

Max(H)

MRG Maximal ribbonless graph

Description

MRG generates and plots maximal ribbonless graphs (a modification of MC graph to use m-separation)
after marginalisation and conditioning.

Usage

MRG(amat,M=c(),C=c(),showmat=TRUE,plot=FALSE, plotfun = plotGraph, ...)

Arguments

amat An adjacency matrix, or a graph that can be a graphNEL or an igraph object
or a vector of length 3e, where e is the number of edges of the graph, that is a
sequence of triples (type, node1label, node2label). The type of edge can be "a"
(arrows from node1 to node2), "b" (arcs), and "l" (lines).

M A subset of the node set of a that is going to be marginalized over

C Another disjoint subset of the node set of a that is going to be conditioned on.

showmat A logical value. TRUE (by default) to print the generated matrix.

plot A logical value, FALSE (by default). TRUE to plot the generated graph.

plotfun Function to plot the graph when plot == TRUE. Can be plotGraph (the default)
or drawGraph.

... Further arguments passed to plotfun.

Details

This function uses the functions RG and Max.

Value

A matrix that consists 4 different integers as an ij-element: 0 for a missing edge between i and j, 1
for an arrow from i to j, 10 for a full line between i and j, and 100 for a bi-directed arrow between i
and j. These numbers are added to be associated with multiple edges of different types. The matrix
is symmetric w.r.t full lines and bi-directed arrows.

Author(s)

Kayvan Sadeghi
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References

Koster, J.T.A. (2002). Marginalizing and conditioning in graphical models. Bernoulli, 8(6), 817-
840.

Richardson, T.S. and Spirtes, P. (2002). Ancestral graph Markov models. Annals of Statistics, 30(4),
962-1030.

Sadeghi, K. (2013). Stable mixed graphs. Bernoulli 19(5B), 2330–2358.

Sadeghi, K. and Lauritzen, S.L. (2014). Markov properties for loopless mixed graphs. Bernoulli
20(2), 676-696.

See Also

MAG, Max, MSG, RG

Examples

ex <- matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, ##The adjacency matrix of a DAG
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0),16,16, byrow = TRUE)

M <- c(3,5,6,15,16)
C <- c(4,7)
MRG(ex, M, C, plot = TRUE)
###################################################
H <- matrix(c( 0, 100, 1, 0,

100, 0, 100, 0,
0, 100, 0, 100,
0, 1, 100, 0), 4,4)

Max(H)

msep The m-separation criterion

Description

msep determines whether two set of nodes are m-separated by a third set of nodes.
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Usage

msep(a, alpha, beta, C = c())

Arguments

a An adjacency matrix, or a graph that can be a graphNEL or an igraph object
or a vector of length 3e, where e is the number of edges of the graph, that is a
sequence of triples (type, node1label, node2label). The type of edge can be "a"
(arrows from node1 to node2), "b" (arcs), and "l" (lines).

alpha A subset of the node set of a

beta Another disjoint subset of the node set of a

C A third disjoint subset of the node set of a

Value

A logical value. TRUE if alpha and beta are m-separated given C. FALSE otherwise.

Author(s)

Kayvan Sadeghi

References

Richardson, T.S. and Spirtes, P. (2002) Ancestral graph Markov models. Annals of Statistics, 30(4),
962-1030.

Sadeghi, K. and Lauritzen, S.L. (2014). Markov properties for loopless mixed graphs. Bernoulli
20(2), 676-696.

See Also

dSep, MarkEqMag

Examples

H <-matrix(c(0,0,0,0,
1,0,0,1,
0,1,0,0,
0,0,0,0),4,4)

msep(H,1,4, 2)
msep(H,1,4, c())
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MSG Maximal summary graph

Description

MAG generates and plots maximal summary graphs after marginalization and conditioning.

Usage

MSG(amat,M=c(),C=c(),showmat=TRUE,plot=FALSE, plotfun = plotGraph, ...)

Arguments

amat An adjacency matrix of a MAG, or a graph that can be a graphNEL or an igraph
object or a vector of length 3e, where e is the number of edges of the graph, that
is a sequence of triples (type, node1label, node2label). The type of edge can be
"a" (arrows from node1 to node2), "b" (arcs), and "l" (lines).

M A subset of the node set of a that is going to be marginalized over

C Another disjoint subset of the node set of a that is going to be conditioned on.

showmat A logical value. TRUE (by default) to print the generated matrix.

plot A logical value, FALSE (by default). TRUE to plot the generated graph.

plotfun Function to plot the graph when plot == TRUE. Can be plotGraph (the default)
or drawGraph.

... Further arguments passed to plotfun.

Details

This function uses the functions SG and Max.

Value

A matrix that consists 4 different integers as an ij-element: 0 for a missing edge between i and j, 1
for an arrow from i to j, 10 for a full line between i and j, and 100 for a bi-directed arrow between i
and j. These numbers are added to be associated with multiple edges of different types. The matrix
is symmetric w.r.t full lines and bi-directed arrows.

Author(s)

Kayvan Sadeghi
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References

Richardson, T.S. and Spirtes, P. (2002). Ancestral graph Markov models. Annals of Statistics, 30(4),
962-1030.

Sadeghi, K. (2013). Stable mixed graphs. Bernoulli 19(5B), 2330–2358.

Sadeghi, K. and Lauritzen, S.L. (2014). Markov properties for loopless mixed graphs. Bernoulli
20(2), 676-696.

Wermuth, N. (2011). Probability distributions with summary graph structure. Bernoulli, 17(3),
845-879.

See Also

MAG, Max, MRG, SG

Examples

ex<-matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, ##The adjacency matrix of a DAG
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0), 16, 16, byrow=TRUE)

M <- c(3,5,6,15,16)
C <- c(4,7)
MSG(ex,M,C,plot=TRUE)
###################################################
H<-matrix(c(0,100,1,0,100,0,100,0,0,100,0,100,0,1,100,0),4,4)
Max(H)

null Null space of a matrix

Description

Given a matrix M find a matrix N such that NTM is zero.

Usage

null(M)
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Arguments

M A matrix.

Value

The matrix N with the basis for the null space, or an empty vector if the matrix M is square and of
maximal rank.

See Also

Null, ~~~

Examples

null(c(1,1,1))

parcor Partial correlations

Description

Finds the matrix of the partial correlations between pairs of variables given the rest.

Usage

parcor(S)

Arguments

S a symmetric positive definite matrix, representing a covariance matrix.

Details

The algorithm computes −σrs/(σrrσss)1/2 where the σrs are concentrations, i.e. elements of the
inverse covariance matrix.

Value

A symmetric matrix with ones along the diagonal and in position (r, s) the partial correlation be-
tween variables r and s given all the remaining variables.

Author(s)

Giovanni M. Marchetti

References

Cox, D. R. & Wermuth, N. (1996). Multivariate dependencies. London: Chapman & Hall.
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See Also

var, cor, correlations

Examples

### Partial correlations for the mathematics marks data
data(marks)
S <- var(marks)
parcor(S)

pcor Partial correlation

Description

Computes the partial correlation between two variables given a set of other variables.

Usage

pcor(u, S)

Arguments

u a vector of integers of length > 1. The first two integers are the indices of vari-
ables the correlation of which must be computed. The rest of the vector is the
conditioning set.

S a symmetric positive definite matrix, a sample covariance matrix.

Value

a scalar, the partial correlation matrix between variables u[1] and u[2] given u[-c(1,2)].

Author(s)

Giovanni M. Marchetti

See Also

cor, parcor, correlations
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Examples

data(marks)
## The correlation between vectors and algebra given analysis and statistics
pcor(c("vectors", "algebra", "analysis", "statistics"), var(marks))

## The same
pcor(c(2,3,4,5), var(marks))
## The correlation between vectors and algebra given statistics
pcor(c("vectors", "algebra", "statistics"), var(marks))

## The marginal correlation between analysis and statistics
pcor(c("analysis","statistics"), var(marks))

pcor.test Test for zero partial association

Description

Test for conditional independence between two variables, given the other ones, assuming a multi-
variate normal distribution.

Usage

pcor.test(r, q, n)

Arguments

r a partial correlation coefficient, computed by pcor.
q the number of variables in the conditioning set.
n integer > 0, the sample size.

Value

tval The Student’s t-test statistic.
df The degrees of freedom
pvalue The P-value, assuming a two-sided alternative.

Author(s)

Giovanni M. Marchetti

See Also

pcor, shipley.test

Examples

## Are 2,3 independent given 1?
data(marks)
pcor.test(pcor(c(2,3,1), var(marks)), 1, n=88)
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plotGraph Plot of a mixed graph

Description

Plots a mixed graph from an adjacency matrix, a graphNEL object, an igraph object, or a descriptive
vector.

Usage

plotGraph(a, dashed = FALSE, tcltk = TRUE, layout = layout.auto,
directed = FALSE, noframe = FALSE, nodesize = 15, vld = 0, vc = "gray",
vfc = "black", colbid = "FireBrick3", coloth = "black", cex = 1.5, ...)

Arguments

a An adjacency matrix: a matrix that consists of 4 different integers as an ij-
element: 0 for a missing edge between i and j, 1 for an arrow from i to j, 10 for a
full line between i and j, and 100 for a bi-directed arrow between i and j. These
numbers can be added to generate multiple edges of different types. The matrix
must be symmetric w.r.t full lines and bi-directed arrows. Or a graph that can be
a graphNEL or an igraph object.Or a vector of length 3e, where e is the number
of edges of the graph, that is a sequence of triples (type,node1label,node2label).
The type of edge can be "a" (arrows from node1 to node2), "b" (arcs), and "l"
(lines).

dashed A logical value. If TRUE the bi-directed edges are plotted as undirected dashed
edges.

tcltk A logical value. If TRUE the function opens a tcltk device to plot the graphs,
allowing the interactive manimulation of the graph. If FALSEthe function opens
a standard device without interaction.

layout The name of a function used to compute the (initial) layout of the graph. The
default is layout.auto. This can be further adjusted if tcltk is TRUE.

directed A logical value. If FALSE a symmetric adjacency matrix with entries 1 is inter-
preted as an undirected graph. If TRUE it is interpreted as a directed graph with
double arrows. If a is not an adjacency matrix, it is ignored.

noframe A logical value. If TRUE, then the nodes are not circled.
nodesize An integer denoting the size of the nodes (default 15). It can be increased to

accommodate larger labels.
vld An integer defining the distance between a vertex and its label. Defaults to 0.
vc Vertex color. Default is "gray".
vfc Vertex frame color. Default is "black".
colbid Color of the bi-directed edges. Default is "FireBrick3".
coloth Color of all the other edges. Default is "black".
cex An integer (defaults to 1) to adjust the scaling of the font of the labels.
... Further arguments to be passed to plot or tkplot.
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Details

plotGraph uses plot and tkplot in igraph package.

Value

Plot of the associated graph and returns invisibly a list with two slots: tkp.id, graph, the input
graph as an igraph object. The id can be used to get the layout of the adjusted graph. The bi-
directed edges are plotted in red.

Author(s)

Kayvan Sadeghi, Giovanni M. Marchetti

See Also

grMAT, tkplot, drawGraph, plot.igraph

Examples

exvec<-c("b",1,2,"b",1,14,"a",9,8,"l",9,11,
"a",10,8,"a",11,2,"a",11,9,"a",11,10,
"a",12,1,"b",12,14,"a",13,10,"a",13,12)

plotGraph(exvec)
############################################
amat<-matrix(c(0,11,0,0,10,0,100,0,0,100,0,1,0,0,1,0),4,4)
plotGraph(amat)
plotGraph(makeMG(bg = UG(~a*b*c+ c*d), dg = DAG(a ~ x + z, b ~ z )))
plotGraph(makeMG(bg = UG(~a*b*c+ c*d), dg = DAG(a ~ x + z, b ~ z )), dashed = TRUE)
# A graph with double and triple edges
G <-
structure(c(0, 101, 0, 0, 100, 0, 100, 100, 0, 100, 0, 100, 0,
111, 100, 0), .Dim = c(4L, 4L), .Dimnames = list(c("X", "Z",
"Y", "W"), c("X", "Z", "Y", "W")))
plotGraph(G)
# A regression chain graph with longer labels
plotGraph(makeMG(bg = UG(~Love*Constraints+ Constraints*Reversal+ Abuse*Distress),
dg = DAG(Love ~ Abuse + Distress, Constraints ~ Distress, Reversal ~ Distress,
Abuse ~ Fstatus, Distress ~ Fstatus),
ug = UG(~Fstatus*Schooling+ Schooling*Age)),
dashed = TRUE, noframe = TRUE)

# A graph with 4 edges between two nodes.
G4 = matrix(0, 2, 2); G4[1,2] = 111; G4[2,1] = 111
plotGraph(G4)
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powerset Power set

Description

Finds the list of all subsets of a set.

Usage

powerset(set, sort = TRUE, nonempty = TRUE)

Arguments

set A numeric or character vector.

sort Logical value. If TRUE the subsets are sorted according to dimension. Default is
TRUE.

nonempty Logical value. If TRUE the empty set is omitted. Default is TRUE.

Details

If sort == FALSE the sets are in inverse lexicographical order.

Value

A list of all subsets of set.

Author(s)

Giovanni M. Marchetti

Examples

powerset(c("A", "B", "C"), nonempty = FALSE)
powerset(1:3, sort = FALSE, nonempty = TRUE)

rcorr Random correlation matrix

Description

Generates a random correlation matrix with the method of Marsaglia and Olkin (1984).

Usage

rcorr(d)
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Arguments

d an integer > 0, the order of the correlation matrix.

Details

The algorithm uses rsphere to generate d vectors on a sphere in d-space. If Z is a matrix with such
vectors as rows, then the random correlation matrix is ZZ ′.

Value

a correlation matrix of order d.

Author(s)

Giovanni M. Marchetti

References

Marshall, G.& Olkin, I. (1984).Generating correlation matrices. SIAM J. Sci. Stat. Comput., 5, 2,
470–475.

See Also

rsphere

Examples

## A random correlation matrix of order 3
rcorr(3)
## A random correlation matrix of order 5
rcorr(5)

RepMarBG Representational Markov equivalence to bidirected graphs.

Description

RepMarBG determines whether a given maximal ancestral graph can be Markov equivalent to a
bidirected graph, and if that is the case, it finds a bidirected graph that is Markov equivalent to the
given graph.

Usage

RepMarBG(amat)
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Arguments

amat An adjacency matrix, or a graph that can be a graphNEL or an igraph object
or a vector of length 3e, where e is the number of edges of the graph, that is a
sequence of triples (type, node1label, node2label). The type of edge can be "a"
(arrows from node1 to node2), "b" (arcs), and "l" (lines).

Details

RepMarBG looks for presence of an unshielded non-collider V-configuration in graph.

Value

A list with two components: verify and amat. verify is a logical value, TRUE if there is a repre-
sentational Markov equivalence and FALSE otherwise. amat is either NA if verify == FALSE or the
adjacency matrix of the generated graph, if verify == TRUE. In this case it consists of 4 different
integers as an ij-element: 0 for a missing edge between i and j, 1 for an arrow from i to j, 10 for a
full line between i and j, and 100 for a bi-directed arrow between i and j. These numbers are added
to be associated with multiple edges of different types. The matrix is symmetric w.r.t full lines and
bi-directed arrows.

Author(s)

Kayvan Sadeghi

References

Sadeghi, K. (2011). Markov equivalences for subclasses of loopless mixed graphs. Submitted,
2011.

See Also

MarkEqMag, MarkEqRcg, RepMarDAG, RepMarUG

Examples

H<-matrix(c(0,10,0,0,10,0,0,0,0,1,0,100,0,0,100,0),4,4)
RepMarBG(H)

RepMarDAG Representational Markov equivalence to directed acyclic graphs.

Description

RepMarDAG determines whether a given maximal ancestral graph can be Markov equivalent to a di-
rected acyclic graph, and if that is the case, it finds a directed acyclic graph that is Markov equivalent
to the given graph.
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Usage

RepMarDAG(amat)

Arguments

amat An adjacency matrix, or a graph that can be a graphNEL or an igraph object
or a vector of length 3e, where e is the number of edges of the graph, that is a
sequence of triples (type, node1label, node2label). The type of edge can be "a"
(arrows from node1 to node2), "b" (arcs), and "l" (lines).

Details

RepMarDAG first looks whether the subgraph induced by full lines is chordal and whether there is a
minimal collider path or cycle of length 4 in graph.

Value

A list with two components: verify and amat. verify is a logical value, TRUE if there is a repre-
sentational Markov equivalence and FALSE otherwise. amat is either NA if verify == FALSE or the
adjacency matrix of the generated graph, if verify == TRUE. In this case it consists of 4 different
integers as an ij-element: 0 for a missing edge between i and j, 1 for an arrow from i to j, 10 for a
full line between i and j, and 100 for a bi-directed arrow between i and j. These numbers are added
to be associated with multiple edges of different types. The matrix is symmetric w.r.t full lines and
bi-directed arrows.

Author(s)

Kayvan Sadeghi

References

Sadeghi, K. (2011). Markov equivalences for subclasses of loopless mixed graphs. Submitted,
2011.

See Also

MarkEqMag, MarkEqRcg, RepMarBG, RepMarUG

Examples

H<-matrix(c(0,10,0,0,10,0,0,0,0,1,0,100,0,0,100,0),4,4)
RepMarBG(H)
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RepMarUG Representational Markov equivalence to undirected graphs.

Description

RepMarUG determines whether a given maximal ancestral graph can be Markov equivalent to an
undirected graph, and if that is the case, it finds an undirected graph that is Markov equivalent to
the given graph.

Usage

RepMarUG(amat)

Arguments

amat An adjacency matrix, or a graph that can be a graphNEL or an igraph object
or a vector of length 3e, where e is the number of edges of the graph, that is a
sequence of triples (type, node1label, node2label). The type of edge can be "a"
(arrows from node1 to node2), "b" (arcs), and "l" (lines).

Details

RepMarBG looks for presence of an unshielded collider V-configuration in graph.

Value

A list with two components: verify and amat. verify is a logical value, TRUE if there is a repre-
sentational Markov equivalence and FALSE otherwise. amat is either NA if verify == FALSE or the
adjacency matrix of the generated graph, if verify == TRUE. In this case it consists of 4 different
integers as an ij-element: 0 for a missing edge between i and j, 1 for an arrow from i to j, 10 for a
full line between i and j, and 100 for a bi-directed arrow between i and j. These numbers are added
to be associated with multiple edges of different types. The matrix is symmetric w.r.t full lines and
bi-directed arrows.

Author(s)

Kayvan Sadeghi

References

Sadeghi, K. (2011). Markov equivalences for subclasses of loopless mixed graphs. Submitted,
2011.

See Also

MarkEqMag, MarkEqRcg, RepMarBG, RepMarDAG
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Examples

H<-matrix(c(0,10,0,0,10,0,0,0,0,1,0,100,0,0,100,0),4,4)
RepMarUG(H)

RG Ribbonless graph

Description

RG generates and plots ribbonless graphs (a modification of MC graph to use m-separation) after
marginalization and conditioning.

Usage

RG(amat,M=c(),C=c(),showmat=TRUE,plot=FALSE, plotfun = plotGraph, ...)

Arguments

amat An adjacency matrix, or a graph that can be a graphNEL or an igraph object
or a vector of length 3e, where e is the number of edges of the graph, that is a
sequence of triples (type, node1label, node2label). The type of edge can be "a"
(arrows from node1 to node2), "b" (arcs), and "l" (lines).

M A subset of the node set of a that is going to be marginalized over

C Another disjoint subset of the node set of a that is going to be conditioned on.

showmat A logical value. TRUE (by default) to print the generated matrix.

plot A logical value, FALSE (by default). TRUE to plot the generated graph.

plotfun Function to plot the graph when plot == TRUE. Can be plotGraph (the default)
or drawGraph.

... Further arguments passed to plotfun.

Value

A matrix that consists 4 different integers as an ij-element: 0 for a missing edge between i and j, 1
for an arrow from i to j, 10 for a full line between i and j, and 100 for a bi-directed arrow between i
and j. These numbers are added to be associated with multiple edges of different types. The matrix
is symmetric w.r.t full lines and bi-directed arrows.

Author(s)

Kayvan Sadeghi

References

Koster, J.T.A. (2002). Marginalizing and conditioning in graphical models. Bernoulli, 8(6), 817-
840.

Sadeghi, K. (2013). Stable mixed graphs. Bernoulli 19(5B), 2330–2358.
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See Also

AG„ MRG, SG

Examples

ex <- matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, ##The adjacency matrix of a DAG
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0),16,16, byrow = TRUE)

M<-c(3,5,6,15,16)
C<-c(4,7)
RG(ex,M,C,plot=TRUE)

rnormDag Random sample from a decomposable Gaussian model

Description

Generates a sample from a mean centered multivariate normal distribution whose covariance matrix
has a given triangular decomposition.

Usage

rnormDag(n, A, Delta)

Arguments

n an integer > 0, the sample size.

A a square, upper triangular matrix with ones along the diagonal. It defines, to-
gether with Delta, the concentration matrix (and also the covariance matrix)
of the multivariate normal. The order of A is the number of components of the
normal.

Delta a numeric vector of length equal to the number of columns of A.
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Details

The value in position (i, j) of A (with i < j) is a regression coefficient (with sign changed) in the
regression of variable i on variables i+ 1, . . . , d.

The value in position i of Delta is the residual variance in the above regression.

Value

a matrix with n rows and nrow(A) columns, a sample from a multivariate normal distribution with
mean zero and covariance matrix S = solve(A) %*% diag(Delta) %*% t(solve(A)).

Author(s)

Giovanni M. Marchetti

References

Cox, D. R. & Wermuth, N. (1996). Multivariate dependencies. London: Chapman & Hall.

See Also

triDec, fitDag

Examples

## Generate a sample of 100 observation from a multivariate normal
## The matrix of the path coefficients
A <- matrix(
c(1, -2, -3, 0, 0, 0, 0,

0, 1, 0, -4, 0, 0, 0,
0, 0, 1, 2, 0, 0, 0,
0, 0, 0, 1, 1, -5, 0,
0, 0, 0, 0, 1, 0, 3,
0, 0, 0, 0, 0, 1, -4,
0, 0, 0, 0, 0, 0, 1), 7, 7, byrow=TRUE)

D <- rep(1, 7)
X <- rnormDag(100, A, D)

## The true covariance matrix
solve(A) %*% diag(D) %*% t(solve(A))

## Triangular decomposition of the sample covariance matrix
triDec(cov(X))$A
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rsphere Random vectors on a sphere

Description

Generates a sample of points uniformly distributed on the surface of a sphere in d-space.

Usage

rsphere(n, d)

Arguments

n an integer, the sample size.

d an integer, the dimension of the space. For example, a circle is defined in 2D-
space, a sphere in 3D-space.

Details

The algorithm is based on normalizing to length 1 each d-vector of a sample from a multivariate
normal N(0, I).

Value

a matrix of n rows and d columns.

Author(s)

Giovanni M. Marchetti

See Also

rnorm, rcorr

Examples

## 100 points on circle
z <- rsphere(100,2)
plot(z)

## 100 points on a sphere
z <- rsphere(100, 3)
pairs(z)
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SG summary graph

Description

SG generates and plots summary graphs after marginalization and conditioning.

Usage

SG(amat,M=c(),C=c(),showmat=TRUE,plot=FALSE, plotfun = plotGraph, ...)

Arguments

amat An adjacency matrix, or a graph that can be a graphNEL or an igraph object
or a vector of length 3e, where e is the number of edges of the graph, that is a
sequence of triples (type, node1label, node2label). The type of edge can be "a"
(arrows from node1 to node2), "b" (arcs), and "l" (lines).

M A subset of the node set of a that is going to be marginalised over

C Another disjoint subset of the node set of a that is going to be conditioned on.

showmat A logical value. TRUE (by default) to print the generated matrix.

plot A logical value, FALSE (by default). TRUE to plot the generated graph.

plotfun Function to plot the graph when plot == TRUE. Can be plotGraph (the default)
or drawGraph.

... Further arguments passed to plotfun.

Value

A matrix that consists 4 different integers as an ij-element: 0 for a missing edge between i and j, 1
for an arrow from i to j, 10 for a full line between i and j, and 100 for a bi-directed arrow between i
and j. These numbers are added to be associated with multiple edges of different types. The matrix
is symmetric w.r.t full lines and bi-directed arrows.

Author(s)

Kayvan Sadeghi

References

Sadeghi, K. (2013). Stable mixed graphs. Bernoulli 19(5B), 2330–2358.

Wermuth, N. (2011). Probability distributions with summary graph structure. Bernoulli, 17(3),845-
879.

See Also

AG, MSG, RG
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Examples

ex <- matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, ##The adjacency matrix of a DAG
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0),16,16, byrow = TRUE)

M <- c(3,5,6,15,16)
C <- c(4,7)
SG(ex, M, C, plot = TRUE)
SG(ex, M, C, plot = TRUE, plotfun = drawGraph, adjust = FALSE)

shipley.test Test of all independencies implied by a given DAG

Description

Computes a simultaneous test of all independence relationships implied by a given Gaussian model
defined according to a directed acyclic graph, based on the sample covariance matrix.

Usage

shipley.test(amat, S, n)

Arguments

amat a square Boolean matrix, of the same dimension as S, representing the adjacency
matrix of a DAG.

S a symmetric positive definite matrix, the sample covariance matrix.

n a positive integer, the sample size.

Details

The test statistic is C = −2
∑

ln pj where pj are the p-values of tests of conditional independence
in the basis set computed by basiSet(A). The p-values are independent uniform variables on (0, 1)
and the statistic has exactly a chi square distribution on 2k degrees of freedom where k is the number
of elements of the basis set. Shipley (2002) calls this test Fisher’s C test.
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Value

ctest Test statistic C.

df Degrees of freedom.

pvalue The P-value of the test, assuming a two-sided alternative.

Author(s)

Giovanni M. Marchetti

References

Shipley, B. (2000). A new inferential test for path models based on directed acyclic graphs. Struc-
tural Equation Modeling, 7(2), 206–218.

See Also

basiSet, pcor.test

Examples

## A decomposable model for the mathematics marks data
data(marks)
dag <- DAG(mechanics ~ vectors+algebra, vectors ~ algebra,
statistics ~ algebra+analysis, analysis ~ algebra)
shipley.test(dag, cov(marks), n=88)

Simple Graph Operations

Simple graph operations

Description

Finds the boundary, children, parents of a subset of nodes of a graph.

Usage

bd(nn, amat)
ch(nn, amat)
pa(nn, amat)

Arguments

nn a vector of nodes. It may either a numeric vector, or a character vector. If it is
character vector must be a subset of the rownames of the edge matrix.

amat a square matrix with dimnames specifying the adjacency matrix of the graph
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Details

For definitions of the operators see Lauritzen (1996).

Value

The operators return a character vector specifying the boundary or the children or the parents of
nodes nn in the graph. This is a numeric or a character vector depending on the mode of nn.

Author(s)

Giovanni M. Marchetti

References

Lauritzen, S. (1996). Graphical models. Oxford: Clarendon Press.

See Also

UG, DAG

Examples

## find boundary of a subset of nodes of a DAG
G <- DAG(y ~ x+b+a, b~a, x~a)
bd("b", G)
bd(c("b", "x"), G)
bd("x", G)
bd(c("x","b"), G)
## find boundary of a subset of nodes of an UG
G <- UG(~ y*x*z + z*h*v)
bd("z", G)
bd(c("y", "x"), G)
bd("v", G)
bd(c("x","v"), G)
## children of a subset of nodes of a DAG
G <- DAG(y ~ x+b+a, b~a, x~a)
ch("b", G)
ch(c("b", "x"), G)
ch("x", G)
ch(c("a","x"), G)
## parents of a subset of nodes of a DAG
pa("b", G)
pa(c("b", "x"), G)
pa("x", G)
pa(c("x","b"), G)
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stress Stress

Description

Stress data

Usage

data(stress)

Format

A 4× 4 covariance matrix for the following variables.

Y

V

X

U

Details

See Cox and Wermuth (1996).

References

Cox, D. R. & Wermuth, N. (1996). Multivariate dependencies. London: Chapman & Hall.

Slangen K., Kleemann P.P and Krohne H.W. (1993). Coping with surgical stress. In: Krohne H.
W. (ed.). Attention and avoidance: Strategies in coping with aversiveness. New York, Heidelberg:
Springer, 321-346.

Examples

data(stress)
G = UG(~ Y*X + X*V + V*U + U*Y)
fitConGraph(G, stress, 100)
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surdata A simulated data set

Description

Simulated data following a seemingly unrelated regression model.

Usage

data(surdata)

Format

A data frame with 600 observations on the following 4 variables.

A a numeric response vector

B a numeric response vector

X a numeric vector

Z a numeric vector with codes 1 and -1 for a binary variables.

Examples

data(surdata)
pairs(surdata)

swp Sweep operator

Description

Sweeps a covariance matrix with respect to a subset of indices.

Usage

swp(V, b)

Arguments

V a symmetric positive definite matrix, the covariance matrix.

b a subset of indices of the columns of V.

Details

The sweep operator has been introduced by Beaton (1964) as a tool for inverting symmetric matrices
(see Dempster, 1969).
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Value

a square matrix U of the same order as V. If a is the complement of b, then U[a,b] is the matrix
of regression coefficients of a given b and U[a,a] is the corresponding covariance matrix of the
residuals.

If b is empty the function returns V.

If b is the vector 1:nrow(V) (or its permutation) then the function returns the opposite of the inverse
of V.

Author(s)

Giovanni M. Marchetti

References

Beaton, A.E. (1964). The use of special matrix operators in statistical calculus. Ed.D. thesis,
Harvard University. Reprinted as Educational Testing Service Research Bulletin 64-51. Princeton.

Dempster, A.P. (1969). Elements of continuous multivariate analysis. Reading: Addison-Wesley.

See Also

fitDag

Examples

## A very simple example
V <- matrix(c(10, 1, 1, 2), 2, 2)
swp(V, 2)

topSort Topological sort

Description

topOrder returns the topological order of a directed acyclic graph (parents, before children). topSort
permutates the adjacency matrix according to the topological order.

Usage

topSort(amat)
topOrder(amat)

Arguments

amat a square Boolean matrix with dimnames, representing the adjacency matrix of a
directed acyclic graph.
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Details

The topological order needs not to be unique. After the permutation the adjacency matrix of the
graph is upper triangular. The function is a translation of the Matlab function topological_sort
in Toolbox BNT written by Kevin P. Murphy.

Value

topOrder(amat) returns a vector of integers representing the permutation of the nodes. topSort(amat)
returns the adjacency matrix with rows and columns permutated.

Note

The order of the nodes defined by DAG is that of their first appearance in the model formulae (from
left to right).

Author(s)

Kevin P. Murphy, Giovanni M. Marchetti

References

Aho, A.V., Hopcrtoft, J.E. & Ullman, J.D. (1983). Data structures and algorithms. Reading:
Addison-Wesley.

Lauritzen, S. (1996). Graphical models. Oxford: Clarendon Press.

See Also

DAG, isAcyclic

Examples

## A simple example
dag <- DAG(a ~ b, c ~ a + b, d ~ c + b)
dag
topOrder(dag)
topSort(dag)

transClos Transitive closure of a graph

Description

Computes the transitive closure of a graph (undirected or directed acyclic).

Usage

transClos(amat)
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Arguments

amat a Boolean matrix with dimnames representing the adjacency matrix of a graph.

Details

The transitive closure of a directed graph with adjacency matrix A is a graph with adjacency matrix
A∗ such that A∗

i,j = 1 if there is a directed path from i to j. The transitive closure of an undirected
graph is defined similarly (by substituting path to directed path).

Value

A The adjacency matrix of the transitive closure.

Author(s)

Giovanni M. Marchetti

See Also

DAG, UG

Examples

## Closure of a DAG
d <- DAG(y ~ x, x ~ z)
transClos(d)

## Closure of an UG
g <- UG(~ x*y*z+z*u+u*v)
transClos(g)

triDec Triangular decomposition of a covariance matrix

Description

Decomposes a symmetric positive definite matrix with a variant of the Cholesky decomposition.

Usage

triDec(Sigma)

Arguments

Sigma a symmetric positive definite matrix.
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Details

Any symmetric positive definite matrix Σ can be decomposed as Σ = B∆BT where B is upper
triangular with ones along the main diagonal and ∆ is diagonal. If Σ is a covariance matrix, the
concentration matrix is Σ−1 = AT∆−1A where A = B−1 is the matrix of the regression coeffi-
cients (with the sign changed) of a system of linear recursive regression equations with independent
residuals. In the equations each variable i is regressed on the variables i + 1, . . . , d. The elements
on the diagonal of ∆ are the partial variances.

Value

A a square upper triangular matrix of the same order as Sigma with ones on the
diagonal.

B the inverse of A, another triangular matrix with unit diagonal.

Delta a vector containing the diagonal values of ∆.

Author(s)

Giovanni M. Marchetti

References

Cox, D. R. & Wermuth, N. (1996). Multivariate dependencies. London: Chapman & Hall.

See Also

chol

Examples

## Triangular decomposition of a covariance matrix
B <- matrix(c(1, -2, 0, 1,

0, 1, 0, 1,
0, 0, 1, 0,
0, 0, 0, 1), 4, 4, byrow=TRUE)

B
D <- diag(c(3, 1, 2, 1))
S <- B %*% D %*% t(B)
triDec(S)
solve(B)

UG Defining an undirected graph (UG)

Description

A simple way to define an undirected graph by means of a single model formula.
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Usage

UG(f)

Arguments

f a single model formula without response

Details

The undirected graph G = (V,E) is defined by a set of nodes V and a set of pairs E. The set of
pairs is defined by the set of interactions in the formula. Interactions define complete subgraphs
(not necessarily maximal) of the UG. The best way is to specify interactions that match the cliques
of the undirected graph. This is the standard way to define graphical models for contingency tables.
Remember that some hierarchical models are not graphical, but they imply the same graph.

The function returns the edge matrix of the graph, i.e. a square Boolean matrix of order equal to
the number of nodes of the graph and a one in position (i, j) if there is an arrow from j to i and
zero otherwise. By default this matrix has ones along the main diagonal. For UGs this matrix is
symmetric. The dimnames of the edge matrix are the nodes of the UG.

Value

a Boolean matrix with dimnames, the adjacency matrix of the undirected graph.

Author(s)

Giovanni M. Marchetti

References

Lauritzen, S. (1996). Graphical models. Oxford: Clarendon Press.

See Also

fitConGraph, fitCovGraph, DAG

Examples

## X independent of Y given Z
UG(~ X*Z + Y*Z)

# The saturated model
UG(~ X*Y*Z)

## The model without three-way interactions has the same graph
UG(~ X*Y + Y*Z + Z*X)
UG(~ (X + Y + Z)^2)

## Butterfly model defined from the cliques
UG(~ mec*vec*alg + alg*ana*sta)
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## Some isolated nodes
UG(~x*y*z + a + b)

unmakeMG Loopless mixed graphs components

Description

Splits the adjacency matrix of a loopless mixed graph into three components: directed, undirected
and bi-directed.

Usage

unmakeMG(amat)

Arguments

amat a square matrix, with dimnames, representing a loopless mixed graph. The ma-
trix consists of 4 different integers as an ij-element: 0 for a missing edge be-
tween i and j, 1 for an arrow from i to j, 10 for a full line between i and j,
and 100 for a bi-directed arrow between i and j. These numbers are added to be
associated with multiple edges of different types. The matrix is symmetric w.r.t
full lines and bi-directed arrows.

Details

The matrices ug, and bg are just symmetric Boolean matrices.

Value

It is the inverse of makeAG. It returns the following components.

dg the adjacency matrix of the directed edges.
ug the adjacency matrix of the undirected edges.
bg the adjacency matrix of the bi-directed edges.

Author(s)

Mathias Drton, Giovanni M. Marchetti

See Also

makeMG

Examples

ag <- makeMG(ug=UG(~y0*y1), dg=DAG(y4~y2, y2~y1), bg=UG(~y2*y3+y3*y4))
isAG(ag)
unmakeMG(ag)
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Utility Functions Utility functions

Description

Functions used internally.

Author(s)

Kayvan Sadeghi, Giovanni M. Marchetti

See Also

unique,setdiff, is.element
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